
A Computational Software System to Design Order Picking
Warehouses

S. G. Ozdena,∗, A. E. Smithb, K. R. Guec

aInformation Sciences & Technology, Penn State Abington, Abington, PA 19001, USA
bDepartment of Industrial & Systems Engineering, Auburn University, Auburn, AL 36849, USA

cResearch and Development, Fortna, Louisville, KY 40292, USA

Abstract

Even though order picking is the most costly operation in a warehouse, current design practices

have used the same principles (straight rows with parallel pick aisles and perpendicular cross

aisles) to reduce travel distances between pick locations for more than sixty years. We present

an open-source computational software system for facilitating the design of warehouse layouts

to near-optimality considering average walking distance of the picker as the objective function.

This software is particularly novel because a wide variety of traditional and innovative designs

are automatically generated and evaluated. For the warehouse design parameters we consider the

rectangular aspect ratio of the floorplan, the number and location of cross aisles, the number and

location of pick aisles, and the location of a single input/output location. The main components

of the design system are importing pick list profile data, creating the warehouse layout design

as a network, product allocation (slotting) of SKUs through the warehouse, routing of pickers

on a sample of orders using an exact routing algorithm, and design optimization using a meta-

heuristic. We provide both mathematical and computational descriptions of the algorithms used

by the software system, describe the types of problems that can be solved, and summarize our

computational experience. This software is open source available on a GitHub website under an

MIT license.

Keywords: Warehouse Design, Open Source, Computational Tool, Optimization

1. Introduction

Order picking is the most costly operation in a warehouse (Tompkins, 2010). It is strategic

to every supply chain because slow performance results in unsatisfactory customer experience and

high costs (Henn, 2012) especially vital in today’s logistics environment. However, warehouses are

still designed with the same design principles that have been in place for many decades, namely:

∗Corresponding author
Email addresses: gokhan@psu.edu (S. G. Ozden), smithae@auburn.edu (A. E. Smith), kevingue@fortna.com

(K. R. Gue)

Preprint submitted to Elsevier March 26, 2021

straight rows with parallel pick aisles and perpendicular cross aisles (Vaughan and Petersen, 1999;

Petersen, 1999). Gue and Meller (2009) challenged these assumptions by proposing the fishbone

layout, which achieved reductions in travel distance of up to 20% in unit-load warehouses. The

fishbone layout has been effectively applied to newly built warehouses (Meller and Gue, 2009).

Even given these innovations, the research and practice in finding superior designs for order picking

warehouses are lacking, especially by using a software design system.

Both research and practice are sparse largely because the problem is very complex and open-

source software is not available. In this paper, we present an open source warehouse design and

optimization system that can be used to find superior designs for different types of order picking

operations. For ease of reference, we have named this system “GABAK.” GABAK gives the user

the ability to import sets of pick list data and optimize the layout to minimize the average travel

distance. Along with identification of the warehouse block layout and appropriate product alloca-

tion/slotting, users can compare alternative designs explicitly or develop a design of experiments

in a spreadsheet to import to GABAK to ascertain performance indicators (e.g., average travel

distance and warehouse area). This is the first known open source warehouse design system and

thus represents a major step forward. After a literature review, we give the overall approach in de-

scriptive and mathematical terms, the details of each component of the software system, some test

cases, and conclusions and recommendations for future research. Appendix A contains additional

details regarding some algorithms and software components.

2. Literature Review

The common practice for warehouse layout design is to use computer aided design (CAD), with

only a small percentage of the warehouse designers using a specialized warehouse design software

(Baker and Canessa, 2009). Many companies design warehouses based on experience and rules

of thumb. They then use a CAD software package to draft layouts. Baker and Canessa (2009)

concluded that there are some techniques available to facilitate warehouse design, but they focus on

assisting experienced warehouse designers rather than being comprehensive and fairly autonomous.

There are very few open access tools available for research and educational use related to

warehouse design. Roodbergen et al. (2008) presented a model that minimizes travel distances in

the picking area by identifying an appropriate layout structure consisting of one or more blocks

of parallel aisles. This tool is accessible on Roodbergen’s website (Roodbergen, 2019b) and it

determines the optimal number of aisles and blocks but is limited to traditional layouts and assumes

the depot location is fixed at the lower left corner. Other important assumptions are that products

are slotted/allocated with a random storage policy and order pickers follow an S-shape routing for

2

picking. Another tool developed by Roodbergen (2019a) analyzed different routing methods in a

traditional warehouse. This web based tool lets users to set the layout based on the number of

blocks, the number of aisles, the number of storage locations, and the depot location, then test

different routing methods for a given pick list (i.e., a set of pick locations).

The aforementioned papers assume a greenfield, or new, warehouse design. However, ware-

houses that are already constructed may realize a high return on investment with a warehouse

re-design if there is increased efficiency in order picking operations. Berglund and Batta (2012)

stated that cross aisle configurations can be changed without incurring prohibitive costs. Some

order picking operations are performed by picking from pallet storage, which can be readily re-

configured to re-orient the cross aisle and pick aisle positions. For this reason, GABAK can be

employed for re-designing warehouses as well as for greenfield design.

3. Methodology

3.1. General Framework

The goal of GABAK is to identify superior layout designs for order picking warehouses. By

superior, it is meant to have minimal travel distance/time while adhering to standard practices in

warehouse designs and operations. Superior is also characterized by designs that move beyond the

standard orthogonal warehouse designs with no or a few cross aisles. Using the characterization

of the products (i.e., SKUs) and their popularity (i.e., the demand of the items and typical order

lists), the system considers the design variables of floorplan aspect ratio, locations of cross aisles,

locations of pick aisles, and location of the input/output (or depot) for a given warehouse capacity.

The capacity is stated in interchangeable (that is, same size and shape) storage locations. The

system returns values for each of the design parameters along with the calculated average travel

distance of the pickers.

Our approach has the steps as given in Figure 1. First we import the pick list profile data of

the warehouse (this could be historical data from the enterprise or simulated data generated from

a pick list profile). Then we define a few search parameters (e.g., cross aisle width) which are

fixed throughout the optimization and a few search boundaries (e.g., warehouse maximum aspect

ratio) which create lower and upper bounds for some variables. Then the evolutionary strategies

(ES) meta-heuristic, described in full later, automatically generates a wide variety of designs and

returns the best one to minimize average expected distance traveled by order pickers. Distance is

correlated with cost and is the typical metric used to assess warehouse designs in the literature.

3

Start

1. Import Pick List Profile Data

2. Define Search Boundaries

3. Search with ES

4. Best Warehouse Design

End

Figure 1: The solution approach

3.2. Assumptions

The order picking process is subject to a number of practical and common assumptions. First,

we use a newly developed modified turnover-based storage (slotting or allocation) policy described

in detail in Section 3.6.4. For warehouses that keep product popularity information updated on a

timely basis, turnover-based storage is superior if there is little congestion. We assume that the

turnover frequency of each product is known and constant through time. We also assume that each

Stock Keeping Unit (SKU) can only be assigned to a single storage location and the capacity of

this storage location is sufficient to store this SKU. Each storage location is of same size similar

to assumptions given in (Roodbergen and De Koster, 2001a; Öztürkoğlu et al., 2014; Petersen and

Aase, 2004). In practice, demand rates are varying. Therefore, warehouses using a turnover-based

storage policy may need to reassign products to storage locations periodically.

Second, we consider only the straight line distance within an aisle, and not the lateral movements

within a picking aisle. This is a common assumption in the warehouse literature (Goetschalckx

and Ratliff, 1988).

Third, the picking route is assumed to start and end at a single depot or input/output location,

located anywhere along the periphery of the warehouse.

Fourth, the product allocation/slotting and routing computations do not account for similar

or correlated products stored at different locations. In other words, an SKU cannot be placed in

multiple storage locations.

Finally, the capacity of the order picker is assumed to be sufficient for all items to be selected

during a single tour. For a given pick list, only a single route is necessary for the picker to travel.

3.3. Importing Pick List Data

In the first phase, we use either simulated pick lists generated from a distribution using Bender’s

model (Bender, 1981) or use historical pick list data. The import phase only needs these two

4

parameters: pick list ID and SKU number. In Appendix B, we give an example of pick list data.

After the pick list data is imported, each unique SKU number and pick list ID is extracted

and the average number of SKUs per pick list is calculated, which is later used by the product

allocation/slotting algorithm.

3.4. Warehouse Design Classes

A warehouse design is classified according to three components: exterior nodes, interior nodes,

and cross aisle segments (Öztürkoğlu et al., 2014). A node is defined as a point of intersection

of a cross aisle segment and the exterior boundary of the design space, or the intersection of two

or more cross aisle segments within the interior. We do not allow interior nodes with degree less

than two. Cross aisle and picking aisle segments must be straight lines. We consider 19 design

classes (shown in Figure 2) during a single search to find a best layout. Collectively, these classes

comprise all possible designs that can be created with up to four exterior nodes (termination point

of a cross aisle) and up to one interior node (intersection of multiple cross aisles). Note that a

single exterior node is not possible. The set of four exterior and one interior nodes enables a huge

number of possible layouts for warehouses including any that would actually be built. Add more

possible nodes would be mathematically possible of course but not practical in warehousing.

3.5. Model Formulation

We now present the formal mathematical model used in the design optimization. Recall that

we working with a rectangular area with up to four exterior nodes (ends of cross aisles) and up

to one interior node (also the end of one or more cross aisles). There is a single depot which can

be located anywhere along the perimeter of the rectangle. Nodes are placed in continuous, that

is real valued, space. Pick aisles within a region defined by cross aisles are always parallel and of

a set distance apart. Pickers are routed from the depot using a minimal path to gather all items

and return to the depot. The decision variables are the location of the depot, the aspect ratio of

the bounding rectangle, the locations of any cross aisle segments, and the angles of the pick aisles

within each region. First, we define the notation used. Note that p is an exterior/interior node

designator.

Table 1: Some important notation

Name Description

C set of connected exterior or interior nodes that form cross aisles

E set of exterior nodes

Continued on next page

5

Table 1 – continued from previous page

Name Description

D distance matrix for storage locations

i index of item (SKU)

j index of item (secondary index)

k index of storage location (k = 1 is for the depot location)

t index of pick list

Table 2: Warehouse design parameters (set by the user)

Name Description

SLW storage location width

SLD storage location depth

CAW cross aisle width

PAW pick aisle width

Table 3: Other parameters used (calculated by the system)

Name Description

n number of SKUs

m number of pick lists

Lt set of SKUs contained in pick list t

p index of interior or exterior nodes where p = 5 is an interior node

s index of interior or exterior nodes where s = 5 is an interior node (second index)

Table 4: Design decision variables

Name Description

X interior node X axis (standardized between 0 and 1, represented by p = 5)

Y interior node Y axis (standardized between 0 and 1, represented by p = 5)

Ep exterior node (one dimensional variable standardized between 0 and 1), Ep ∈ E, p =

1, 2, 3, 4

WA warehouse area

AR aspect ratio

Continued on next page

6

Table 4 – continued from previous page

Name Description

DL depot location (one dimensional variable standardized between 0 and 1)

Ar angle of pick aisles in region r, Ar ∈ A, r = 1, ..., 8. A is the set of region angle values

Hr horizontal adjuster for region r, Hr ∈ H, r = 1, ..., 8. H is the set of horizontal

adjuster values for each region

Vr vertical adjuster for region r , Vr ∈ V, r = 1, ..., 8. V is the set of vertical adjuster

values for each region

Cps binary variable equal to 1 iff node p is connected to node s, Cps ∈ C, p 6= s

xi,k binary variable equal to 1 iff item i is is at location k

li,j,t binary variable equal to 1 iff list t requires to go from item i to item j when performing

the picking operation

ui,t the picking order of item i in list t

Table 5: Calculated values for a given warehouse design

Name Description

NL number of storage locations

Dk,l distance between locations k and l

7

(a) 0-0-0 (b) 2-0-1 (c) 2-1-2 (d) 3-0-2

(e) 3-0-3 (f) 3-1-3 (g) 3-1-4 (h) 3-1-5

(i) 3-1-6 (j) 4-0-2 (k) 4-0-3 (l) 4-0-4

(m) 4-0-5 (n) 4-1-3 (o) 4-1-4 (p) 4-1-5

(q) 4-1-6 (r) 4-1-7 (s) 4-1-8

Figure 2: The 19 design classes searched using GABAK. For example 3-0-2 represents a warehouse design class with
3 exterior nodes, no interior nodes, and 2 cross-aisle segments. This design has 3 regions and each region has its
own angled pick aisles (pick aisles are not depicted in this figure for simplicity). See Figure 3 for a detailed 3-0-2
design class example.

8

Model:

Min

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

m∑
t=1

xi,kxj,lli,j,tDk,l (1)

s.t.

n∑
j=1

xi,j = 1, 1 ≤ i ≤ n (2)

n∑
i=1

xi,j = 1, 1 ≤ j ≤ n (3)

x1,1 = 1 (4)∑
j∈Lt

li,j,t = 1, i ∈ Lt, 1 ≤ t ≤ m (5)

∑
i∈Lt

li,j,t = 1, j ∈ Lt, 1 ≤ t ≤ m (6)

li,i,t = 1, 1 ≤ i ≤ n, 1 ≤ t ≤ m (7)

ui,t = 1, 1 ≤ t ≤ m (8)

ui,t − uj,t + nli,j,t ≤ n− 1, 1 ≤ i ≤ n, 2 ≤ j ≤ n, 1 ≤ t ≤ m, i 6= j (9)

NL+ 1 = n (10)

0 ≤ X,Y,DL,AR,Ep, Hr, Vr ≤ 1, 1 ≤ p ≤ 4, 1 ≤ r ≤ 8 (11)

WA ≥ 0 (12)

Cps, xi,j , li,j,t ∈ {0, 1}, 1 ≤ p, s ≤ 5, 1 ≤ i, j ≤ n, 1 ≤ t ≤ m (13)

The aim here is to minimize the distance traveled by pickers when performing the order picking

operation. The model is a modified version of the mathematical model proposed by Beroule et al.

(2017). The objective function (eq. 1) represents the sum of the distances between each SKU to

be picked when they are ordered as a TSP minimum distance tour. The picker starts and ends at

the depot, which is denoted by x1,1. The distance can either be the traditional aisle center to aisle

center method or the more realistic visibility graph method according to the user’s choice (Ozden

et al., 2020). GABAK offers both distance metrics. The mathematical descriptions of the distance

calculations are found in Appendix A.

Equations (2) and (3) force each SKU to be placed in a unique location and a location to be

occupied by a unique SKU, respectively. For simplicity, location number 1 is the depot as shown

in equation (4). Equations (5) and (6) enforce that for each pick list each SKU is preceded and

followed by a unique SKU, respectively. Pick lists are considered cyclic, that is, each pick list starts

and ends with the SKU number 1 (the depot). Equation (7) is used to prevent a pick list from

containing the same SKU more than once. Equations (8) and (9) are used for sub tour elimination

9

for pick lists. Equation 10 ensures that the number of storage locations is equal to number of SKUs

(plus one is for the depot since depot is represented by x1,1). NL is calculated in Appendix A.

3.6. Searching the Design Space

A non-linear objective function, an extremely large search space, and continuous decision vari-

ables motivate a meta-heuristic that can effectively identify a near-optimal solution and is ap-

propriate for continously valued variables. Evolutionary Strategies (ES) has been shown to be

effective for warehouse design (Reehuis and Bäck, 2010). It is a very efficient algorithm with few

tuneable parameters for optimization in continuous (real valued) space. Moreover, it self-adapts

the search strategy ranging from diverse, global exploration to focused, local search based on the

search progress.

Öztürkoğlu et al. (2014) introduced the use of a warehouse encoding of continuous variables.

Our encoding is an extended version of Öztürkoğlu et al. (2014) that can search over multiple design

classes. A region is an area bounded by cross aisles. Each design class has a different number of

regions separated by cross aisle segments. For example in Figure 2, the 0-0-0 design class has only

one region and the 2-0-1 design class has two regions separated by a single cross aisle segment. Our

encoding uses a string of continuous variables that defines locations of the cross aisle endpoints,

the angles of picking aisles in each region, the aspect ratio of the warehouse, and the adjusting

amounts for the storage locations in each region, and the location of the depot. An exterior node

is defined in one dimensional standardized space (between 0 and 1) where the upper-left corner is

arbitrarily defined as the origin 0. The upper-right, lower-right, and lower-left corners are defined

as 0.25, 0.5, 0.75, respectively. An interior node is defined in two dimensional standardized space

(between 0 and 1) where the upper-left corner is defined as the origin (0, 0) and the lower-right

corner is defined as (1, 1). Note that the coordinate definitions for exterior nodes and for interior

nodes are (necessarily) different.

An example of the encoding and the represented layout are given in Table 6 and Figure 3,

respectively. The “type” column in Table 6 shows the independent variables as type 1, the param-

eters as type 2, and the dependent variables as type 3. E1, E2, E3, and E4 reflect the position of

exterior nodes along a clockwise path of length 1 beginning and ending at the upper left corner.

IX and IY are the normalized coordinate locations of the interior node (if there is one). DE is

the location of the depot using the same encoding system as used for exterior nodes. A1 through

A8 are the angles of the picking aisles for pick aisle regions. HA1 to HA8 and VA1 to VA8 are

horizontal and vertical adjuster variables, respectively. Each adjuster variable very slightly shifts

the parallel pick aisles inside a region in horizontal or vertical directions without changing their

10

angle. These adjuster variables determine the precise positions for the pick aisles. These are fully

defined mathematically in the Appendix A.

Recall that with up to four exterior nodes and one interior node, there exists the possibility of

many cross aisles in all sorts of configurations. But most warehouse designs will be simpler, that

is not use all possible cross aisles. Whether a cross aisle is created or not is controlled with PC

parameters (PC stands for “probability of cross-aisle.”). For example, the likelihood of having a

cross aisle segment between the E1 and E2 nodes is determined by the PC12 parameter. A value

of 1 means that a cross aisle segment between those two points will always be present whereas a

0 means it will never be present. Probabilities between 0 and 1 determine the likelihood of the

cross aisle being present or not. The optimization algorithm decreases or increases the probability

of these variables to find a superior design. Of course, to define the actual design, we need the

realizations of the corresponding connections which are denoted by C12, C13, C14, C15, C23, C24,

C25, C34, C35, C45 in this case.

In our encoding not every variable is used for every design class. For example, the 0-0-0 design

class has only one region so it only uses A1, HA1, and VA1 and it does not use E1, E2, E3, E4, IX,

nor IY. However, GABAK still stores these variables since the optimizer may change to a different

design class that requires them.

The 19 design classes (see Figure 2) are considered because comprise all possible designs that

can be built with up to four exterior nodes and up to one interior node. However, the GABAK

source code has no limitation on the number of interior or exterior nodes.

Table 6: Encoding example

Name Type Range Value Description

SLW 2 (0,∞) 4 Storage Location Width

SLD 2 (0,∞) 4 Storage Location Depth

CAW 2 (0,∞) 12 Cross Aisle Width

PAW 2 (0,∞) 12 Pick Aisle Width

WW 3 (0,∞) 400 Warehouse Width

WD 3 (0,∞) 200 Warehouse Depth

WA 2&3 (0,∞) 80000 Warehouse Area

AR 1 (0,∞) 0.5 Aspect Ratio

E1 1 [0,1) 0.0416 Exterior Node 1

E2 1 [0,1) 0.2083 Exterior Node 2

Continued on next page

11

Table 6 – continued from previous page

Name Type Range Value Description

E3 1 [0,1) 0.6250 Exterior Node 3

E4 1 [0,1) 0.6250 Exterior Node 4

IX 1 (0,1) 0.5000 Interior Node X Axis

IY 1 (0,1) 0.5000 Interior Node Y Axis

DE 1 (0,1) 0.625 Depot

A1 1 [0,1) 0.1777 Region 1 Angle (32◦)

A2 1 [0,1) 0.8166 Region 2 Angle (147◦)

A3 1 [0,1) 0.5000 Region 3 Angle (90◦)

A4 1 [0,1) 0.5000 Region 4 Angle (90◦)

A5 1 [0,1) 0.5000 Region 5 Angle (90◦)

A6 1 [0,1) 0.5000 Region 6 Angle (90◦)

A7 1 [0,1) 0.5000 Region 7 Angle (90◦)

A8 1 [0,1) 0.5000 Region 8 Angle (90◦)

HA1 1 [0,1) 0.5000 Horizontal Adjuster 1

HA2 1 [0,1) 0.5000 Horizontal Adjuster 2

HA3 1 [0,1) 0.5000 Horizontal Adjuster 3

HA4 1 [0,1) 0.5000 Horizontal Adjuster 4

HA5 1 [0,1) 0.5000 Horizontal Adjuster 5

HA6 1 [0,1) 0.5000 Horizontal Adjuster 6

HA7 1 [0,1) 0.5000 Horizontal Adjuster 7

HA8 1 [0,1) 0.5000 Horizontal Adjuster 8

VA1 1 [0,1) 0.5000 Vertical Adjuster 1

VA2 1 [0,1) 0.5000 Vertical Adjuster 2

VA3 1 [0,1) 0.5000 Vertical Adjuster 3

VA4 1 [0,1) 0.5000 Vertical Adjuster 4

VA5 1 [0,1) 0.5000 Vertical Adjuster 5

VA6 1 [0,1) 0.5000 Vertical Adjuster 6

VA7 1 [0,1) 0.5000 Vertical Adjuster 7

VA8 1 [0,1) 0.5000 Vertical Adjuster 8

PC12 1 [0,1] 0 Probability of E1-E2 connection

PC13 1 [0,1] 1 Probability of E1-E3 connection

Continued on next page

12

Depot

Figure 3: Corresponding representation of the encoding

Table 6 – continued from previous page

Name Type Range Value Description

PC14 1 [0,1] 0.0001 Probability of E1-E4 connection

PC15 1 [0,1] 0 Probability of E1-I connection

PC23 1 [0,1] 1 Probability of E2-E3 connection

PC24 1 [0,1] 0 Probability of E2-E4 connection

PC25 1 [0,1] 0 Probability of E2-I connection

PC34 1 [0,1] 0 Probability of E3-E4 connection

PC35 1 [0,1] 0 Probability of E3-I connection

PC45 1 [0,1] 0 Probability of E4-I connection

C12 3 0 or 1 0 Realization of E1-E2 connection

C13 3 0 or 1 1 Realization of E1-E3 connection

C14 3 0 or 1 0 Realization of E1-E4 connection

C15 3 0 or 1 0 Realization of E1-I connection

C23 3 0 or 1 1 Realization of E2-E3 connection

C24 3 0 or 1 0 Realization of E2-E4 connection

C25 3 0 or 1 0 Realization of E2-I connection

C34 3 0 or 1 0 Realization of E3-E4 connection

C35 3 0 or 1 0 Realization of E3-I connection

C45 3 0 or 1 0 Realization of E4-I connection

13

3.6.1. Re-sizing the Warehouse and Penalizing Excess Locations

In the encoding scheme there is a possibility that a warehouse may have a few more or less

storage locations than the number of SKUs. If the warehouse does not have enough locations, it

is an infeasible design (with positive infinite cost). If the warehouse has excess storage locations,

the system shows the number of excess locations (where no SKUs are assigned). The system has

two methods to minimize the number of excess locations and the user can choose the alternative

preferred. The first is “resize to fit” and performs a linear search for the warehouse area variable to

eliminate extra locations (see Algorithm 1). Since this is a heuristic optimality is not guaranteed

but it eliminates excess locations.

The other method is based on the “Near Feasibility Threshold, (NFT)” (Coit et al., 1996) an

adaptive penalty function corresponding to a promising region close to feasibility. Excess locations

are penalized but still considered feasible. We use a modified version of the NFT to penalize

designs with excess locations dynamically (early iterations have less penalty and later iterations

have more penalty for the same number of excess locations). Our slotting algorithm places any

excess locations at distant locations from the depot since they are not used for picking as they are

vacant. The NFT works as follows:

vt = totalnumberoflocationst − totalnumberofSKUs (14)

where vt is the number of excess locations at iteration t. NFTt is calculated as follows:

NFTt =
NFT0

1 + β ∗ t
, (15)

where NFTt is the value of the near feasibility threshold at iteration t, NFT0 is an upper bound

for the NFTt, β is a user defined positive parameter, and t is the iteration counter. The penalty

p is calculated as follows:

p =
(v

NFT

)2
(16)

This adaptive penalty function permits the design space to be searched effectively by allowing

designs with few excess locations at early iterations and enforcing designs with no excess locations

at later iterations. Compared to “resize to fit” implementation, NFT is used during optimization,

not afterwards. Figure 4 shows the increase of the penalty function with increasing number of

iterations for NFT0 = 10 and β = 0.05

14

Algorithm 1 Pseudo-code of the Linear Search for Resize to Fit

function RESIZETOFIT(n,WA,AR)
increased = 0
decreased = 0
warehousefit = false
finalize = false
while warehousefit == false do

WW =
√

WA
AR

WD =
√
WA×AR

Create a warehouse with width WW and depth WD
if increased > 0 and decreased > 0 then

if number of storage locations < n then . This check is necessary because at last
iteration it could have decreased and become infeasible

WA = WA / 0.99 . Increase area
else if number of storage locations > n or finalize = true then

warehousefit = true
break the loop

end if
end if
if number of storage locations < n then

WA = WA / 0.99 . Increase area
increased = increased + 1

else if number of storage locations > n then
WA = WA * 0.99 . Decrease area
decreased = decreased + 1

else if number of storage locations == n then
warehousefit = true

end if
end while

end function

10 20 30 40 50 100

10

20

30

40

Iteration

Penalty (ft. or meters)

1 violation
5 violations
10 violations

Figure 4: Comparison among different number of violations for penalty function

15

3.6.2. Evolutionary Strategies Meta-heuristic

Evolutionary Strategies (ES) was introduced by Rechenberg (1965) and Schwefel (1965) to

imitate the principles of natural evolution as a method to solve continuous parameter optimiza-

tion problems. ES is a population-based meta-heuristic optimization algorithm that uses biology-

inspired mechanisms including mutation and survival of the fittest to refine a set of solution can-

didates iteratively. ES is known for being efficient especially in continuous space and it operates

with very few tuneable parameters. The search self adapts to diversify or concentrate the search

based on the search progress.

GABAK uses an implementation of the standard ES algorithm, (µ + λ)-ES is the population

strategy. The (µ + λ)-ES uses mutation from µ parent individuals to create λ ≥ µ offspring. From

the joint set of parents and offspring, only the µ fittest ones survive (Schwefel, 1975, 1977). The

default values in GABAK are a parent size of 20 and the number of children of 120. Therefore

each parent creates six children at each iteration for these default values. Offspring are generated

through perturbations using a Gaussian/Normal probability distribution with mean 0 about the

variables in the parent solution. The σ value (standard deviation of the Gaussian / Normal

distribution) determines how similar or disimilar an offspring is from the parent. We use a single

σ value for the population. The σ value changes according to a modified 1
5 rule. Rechenberg 1

5

success rule states that the ratio of successful mutations (where children are better than the parent)

to all mutations should be 1
5 . If the ratio is greater than 1

5 , the σ which controls the step size is

increased to find better regions (exploration), and if it is less than 1
5 , the σ is decreased to focus

the search more around the parents (exploitation). We reduce the ratio because each iteration’s

success rate is much lower than 1
5 (usually around 5-10% at early iterations and 1% or lower at later

iterations). Therefore we use 1
20 as the success ratio for this rule. That is, at every 10 iterations

(successratecounter = 10), if the ratio of successful mutations is larger than 5%, the sigma is

increased by 1
0.85 . Otherwise, it is decreased by 0.85.

The e-vector contains all of the Type 1 decision variables described in Table 6, such as AR,

E1, E2, E3, E4, and so on. The y-vector holds the modified/evolved version of the e-vector values

with the added normal random values from the z-vector. Any value (yk) of the y-vector outside

the bounds is repaired to bring it back inside the boundary value by 10% of the variable range.

We use a termination rule of maximum iterations and earlier if the optimization does not improve

the best solution by more than 0.5% for 100 iterations. Figure 5 depicts the main steps of the ES

algorithm. Algorithm 2 shows the pseudo-code of the ES meta-heuristic optimizer. The search

automatically identifies new warehouse designs as it progresses by choosing values of the decision

variables.

16

Algorithm 2 Pseudo-code of the ES algorithm

for all parents i in population of size µ do
Initialize e-vector randomly between its bounds
Calculate e-vector-fitness value f(e)

end for
while maximum iterations not reached do

for all offspring j in children population do
Select a parent e randomly
Draw a z-vector from the normal distribution N(0, σ2)
y-vector = e-vector + z-vector
for all values yk in y-vector do //Repair y-vector if some values are outside the bounds

if yk < Lk then
yk = 0.1 * (Uk - Lk)

end if
if yk > Uk then

yk = 0.9 * (Uk - Lk)
end if

end for
if f(y) < f(e) then

increase success rate
else

decrease success rate
end if

end for
Join parent and children populations and select the µ fittest for the next generation
successratecounter = successratecounter + 1
if successratecounter = 10 then

successratecounter = 0 //Reset counter
if successrate > 0.05 then

σ = σ/0.85 //Increase sigma
else

σ = σ ∗ 0.85 //Decrease sigma
end if

end if
if Less than 0.5 percent improvement over last 100 iterations then

break;
end if

end while

17

Start
Initial

Population
Evaluation

Fitness
Assignment

Max
Iteration
Reached

Significant
Improve-

ment

Population
Maintenance

SelectionMutation

End

No

Yes

No

Yes

Figure 5: ES algorithm

3.6.3. Evaluation

A graph representing the warehouse as a network (see Figure 6) is created for each new de-

sign. This figure only depicts one example of each edge type and node type since showing the

whole network would make the figure cluttered. There are two different network representations

depending on the distance metric selected: aisle centers or visibility graph. With the aisle centers

method, order pickers follow the centers of the aisles to perform picking. This modeling method

is very common in the warehouse literature but it can overestimate tour distances especially for

non-traditional (angled) layouts. With the visibility graph method, order pickers follow shortest

paths by avoiding obstacles (such as racks and pallets) in a warehouse. The visibility graph con-

siders the size of the picker as a parameter since it needs to create a space between the picker and

the obstacles. Without such a buffer distance, the picker would literally walk along side obstacles

such as racking with no space at all. This would not be realistic behavior, hence the need for a

defined size of picker or equivalently a buffer distance. (These distance methods are described in

detail in Ozden (2017) and Ozden et al. (2020).)

The nodes of the network include the depot location (n1), exterior nodes (n2) and interior

nodes (n3) for cross aisles, the beginning or ending points of pick aisles (n4), pick locations (n5),

and corner nodes that connect the exterior boundary edges (n6) (to determine the aspect ratio).

The edges of the network include exterior boundary edges (ed1), region edges (ed2), pick aisles

(ed3), pick aisle end points connection edges (ed4), depot connection edges (ed5), and pick location

connection edges (ed6). A region is an area bounded by region edges that is used to place angled

pick aisles parallel to each other. A pick location is placed on the center line of the appropriate

pick aisle and it provides access to the center of the corresponding storage locations. The distance

between a pick location and its connected storage locations is assumed to be zero because these

storage locations are actually served from the same coordinate.

18

ed2ed4

ed1

n2

n4

n6

ed3
n1

ed5

n5

ed6

Figure 6: Warehouse graph based network representation

A connection between two nodes creates an edge, and the types of nodes connected define the

types of edges created. Table 7 lists the connections between the types of nodes and the types

of edges created by these connections. These show the node set and the edge set. There are two

path finding methods (aisle centers and visibility graph) and they both use Dijkstra’s shortest path

algorithm to find the shortest distances between any two pick locations or any pick location and

the depot location.

3.6.4. Storage (Product Allocation / Slotting)

This section explains how the SKUs are assigned to storage locations within the new warehouse

design. This must be done prior to evaluating the design using the average travel distance since the

distance depends on where items are located. The many-to-many problem, also called the many-

to-many shortest path, is to calculate the pick location to pick location shortest path distances to

find locations that are closest to any other location, on average. In other words, by calculating

many-to-many distances, pick locations that are close to the centroid of the design space are highly

desired. Dijkstra’s algorithm can calculate many-to-many distances and, if n is the total number

of pick locations, the worst-case running time is O(mn log n). After calculating the total travel

distances to every location for each storage location, the locations are sorted based on total travel

distance from smallest to largest to use in the product allocation algorithm described below.

A turnover-based storage policy is used because it is the most efficient policy among random

and class-based storage policies (Petersen and Aase, 2004). In a turnover-based storage, the most

19

Table 7: List of node connections and the names of the resulting edges

Node 1 Node 2 Edge Description

n6 n6 ed1 Connection of two corner nodes is an exterior boundary edge.

n6 n6 ed2 If there is no exterior node on the exterior boundary edge, then
an exterior boundary edge becomes a region edge also.

n6 n2 ed2 Connection of an exterior node and a corner node is a region edge.

n2 n2 ed2 Connection of two exterior nodes is a region edge.

n2 n3 ed2 Connection of an exterior node and an interior node is a region
edge.

n4 n4 ed3 Connection of two beginning and ending points of pick aisles is
a pick aisle if the beginning or ending points of pick aisles are
located on different region edges.

n4 n4 ed4 Connection of two beginning and ending points of pick aisles is
a pick aisle connection edge if the beginning or ending points of
pick aisles are located on the same region edges.

n1 n2 ed5 Connection of a depot location and an exterior node is a depot
connection edge.

n1 n6 ed5 Connection of a depot location and a corner node is a depot con-
nection edge.

n1 n4 ed5 Connection of a depot location and a beginning or ending point
of a pick aisle is a depot connection edge.

n4 n5 ed6 Connection of a pick location and beginning (or ending) points of
pick aisles is a pick location connection edge

20

frequently picked item is stored in the most convenient (most easily reached) location. In single-

command travel (pick lists with a single item), the convenience of locations is based on its distance

to depot. However, when there is more than a single item to pick, the order picker also travels

between pick locations. Travel between pick location increases as the pick list size lengthens and

also the location of the depot becomes less important (Petersen, 1997). The most convenient

location for multiple-command travel for the turnover-based storage policy is not known in the

literature (Pohl et al., 2011). Therefore, we developed an algorithm to calculate the convenience

of locations based on not only considering distance to depot but also considering distance to the

centroid of the warehouse (i.e., the location that has the least average travel distance to other

locations as described above). Once the conveniences of the locations are calculated, the most

frequently picked item is assigned to the most convenient location, and so on, down to the least

frequently ordered SKU. There are other possible slotting algorithms in the literature (Accorsi

et al., 2012; Walter et al., 2013) however, this one is common and computationally expedient.

In Figure 6, some pick locations (n5) have storage locations on both sides and some pick

locations have storage locations only on one side. Either a single SKU or two SKUs can be

assigned to one pick location depending if a pick location has a storage location on one side or has

storage locations on both sides. An SKU cannot be stored in more than one pick location.

When importing pick list profile data, the average pick list size is calculated. For any pick list

that consists of n > 1 picks, an order picker needs to travel between n − 1 pick locations. Let

dok and dmk denote single command and many-to-many travel distances for each pick location k.

These distances are normalized so they can be ranked. The normalized single command sdok and

many-to-many travel distances sdmk for each pick location k are found by using Equations 17 and

18, respectively.

sdok =
dok − domin

domax − domin
(17)

where domin and domax are the minimum and maximum values for single command travel distances,

respectively.

sdmk =
dmk − dmmin

dmmax − dmmin
(18)

where dmmin and dmmax are the minimum and maximum values for many-to-many travel distances,

respectively.

These normalized values are between 0 and 1 where 0 means the most favorable location and 1

means the least favorable location. A linear combination of the normalized values of one-to-many

21

and many-to-many travel distance values is used. Let θ denote the fraction of the travel between

distances (many-to-many problem) of expected travel distances and apls denote the average pick

list size. θ is calculated by using:

θ =
apls− 1

apls+ 1
. (19)

This in turn is used to calculate the convenience ck of each pick location k as a linear combination

of the single command and the many-to-many problem in Equation 20:

ck = (1− θ) ∗ sdok + θ ∗ sdmk (20)

According to this equation, the most convenient locations have values close to 0 and the least

convenient locations have values close to 1. Then SKUs are allocated by popularity (demand) from

most to least convenient pick locations.

3.6.5. Selecting a Routing Method

Routing is the most computationally time consuming part of GABAK. For a given number

of pick lists n, n TSP problems must be solved to calculate the objective function of average

distance traveled. There are two options in GABAK for routing: Lin-Kernighan-Helsgaun (LKH)

(Helsgaun, 2000) for achieving near-optimal solutions and Concorde (Applegate et al., 2019) for

optimal solutions. Pansart et al. (2018) extended a dynamic programming algorithm initially

proposed by Ratliff and Rosenthal (1983) for one block traditional layouts. Their exact algorithm

is faster than Concorde but it cannot be used in GABAK since it only works for traditional layouts

using rectilinear or Manhattan distance. GABAK efficiently solves the TSP routings of a set of

pick lists using parallel and distributed computing paradigms as described in (Ozden et al., 2017).

3.6.6. Optional Dynamic Sampling of Pick Lists

GABAK can perform dynamic pick list sampling during optimization as an option. Early

iterations use a small sample from a set of pick lists to calculate the average travel distance per

pick list, and later iterations increase the sample size dynamically. This saves computational time

during early iterations where the optimization is exploring the entire warehouse design space rather

than focusing on promising areas. Users should definitely use this feature when they are optimizing

large warehouses with a large set of pick lists (i.e., more than 1000 SKUs and 1000 pick lists).

22

3.6.7. User Interface

The graphical user interface enables a user to conduct analyses, perform optimization, or simply

explore designs visually (see Figure 9). The system including a graphical user interface written in

the C# programming language. The user enters various parameters (e.g., warehouse capacity, pick

list data generation parameters) and selects options (e.g., distance method, routing algorithm).

The user has the option to print designs to a printer or save designs as image files, including the

vector based svg format, using the top menu. The computer processing status is reported at the

bottom of the control panel.

3.6.8. Validation of the Optimization Algorithm

To validate the ES meta-heuristic, we followed a similar approach performed by Öztürkoğlu

et al. (2014) and considered a warehouse situation where the Chevron design is the known optimal

(Öztürkoğlu et al., 2012). This is a single, centrally located P&D point and one cross aisle with 1000

SKUs and the demand for those SKUs is uniform. The ES algorithm terminated after 362 iterations

since there were no significant improvement over the last 100 iterations. GABAK returned a design

very similar to a Chevron (see Figure 8), however the pick aisles were marginally different from

the optimal angles in Chevron. The angle of the pick aisles of the right and left regions were

45.2°and 133.3°, instead of 45°and 135°as in the Chevron. The P&D point slightly moved to the

left with a coordinate of 0.1235 compared to the exact middle position of 0.125 and the cross aisle

has end points at 0.1232 and 0.6179 compared to the exactly centered middle aisle end points of

0.125 and 0.625. We performed the same validation with four other random number seeds with

similar results. Recall that the ES is searching over a multitude of designs (formed by all 19 design

classes) so identification of the simple, best design is a good indicator of its effectiveness. This test

gives good evidence that the ES meta-heuristic is a powerful optimizer for warehouse design and

can be relied on to give superior designs. The color coding of storage locations (see Figure 7) is

from most (red) to least (purple) convenient location based on Equation 20. Color coding uses the

wavelength of the visible spectrum below (Hardy and Steeb, 2008).

•••
0 10 20 30 40 50 60 70 80 90 100

Most convenient Least convenient

Figure 7: Color coding from wavelength

23

Figure 8: Validation of the ES returns a design almost identical to the known optimum

4. Example Instances and Usage

In this section, we describe several ways to use GABAK for warehouse design analysis and

optimization. In the first example, we create two fixed warehouse layouts (traditional one block

and two block) and compare the average travel cost of these two designs for a set of pick lists given

by a company. We use this example to follow the GABAK work-flow. In the second example,

we use a generated set of pick lists and find the layout design that minimizes the average travel

cost. In our final example, we create a design of experiments to compare one block and two block

traditional layouts with different pick list sizes. All experiments were performed on a Windows 10

computer with 8GB of RAM and Ryzen 7 1700X 8 core CPU.

4.1. Comparing One Block and Two Block Traditional Layouts

In this example, we compare one block and two block traditional layouts for a given set of

pick lists from real data. The process begins by clicking the “Import RD” button and selecting

the pick list data (an example pick list data file is provided in Appendix B). Then, input the

warehouse parameters such as location width, location depth, and aspect ratio. To create a one

block traditional layout, the Angle1 parameter is set to 90 degrees. There is the option to use

the visibility graph method or the aisle centers method for estimating the distances between two

locations. We selected the visibility graph method for this example and set the picker size to 5.

There is also the option to choose LKH or Concorde for the routing algorithm. We use LKH for

this example. The “Resize to Fit” option eliminates empty storage locations as much as possible

using the line search described earlier and we select this option. The Adjuster and Pick Adjuster

parameters use default values but can be changed them if desired. The remaining parameters

do not need to be changed for a one block traditional layout so we keep the default values (the

default aspect ratio is 0.5 and the default depot location is 0.625 which means it is located at

the bottom center). After setting the parameters, click the “Create” button. Once the system

finishes the calculations it shows the design and the key performance indicator “Average Distance”

value which is 734.0 ft in this case. The warehouse area is 47,511 sq. ft and this warehouse can

24

accommodate 887 SKUs. This is the smallest size that can be achieved by using the “Resize to

Fit” option, but is not provably optimal. The evaluation of this single fixed warehouse design took

1 minute and 38 seconds. Figure 9 shows the GUI of GABAK as well as the traditional one block

layout settings and the results of the experiment.

Figure 9: GABAK graphical user interface with traditional one block layout settings and results

Next, we discuss steps to create a two block layout. Change E1 to 0.875, E2 to 0.375, Angle2 to

90, and click the “C12” check box to add a cross aisle between E1 and E2. Then, click the “Create”

button again and wait for the calculations to finish. GABAK shows the design in Figure 10. The

“Average Distance” value is 652.6 ft. with a warehouse area of 51,935 sq. ft. Even though the area

increased by about 9.3%, the two block design has 12% shorter picker routes on average. This is

the common trade off between area of the warehouse and picker travel because as cross aisles are

25

added, the former increases while the latter decreases.

Figure 10: Traditional two block layout representation using the given parameters

4.2. Optimizing a Warehouse Design for Generated Pick Lists

In this example, GABAK is used to generate a set of pick lists for use in the design optimization

process. The model by Bender (1981) calculates the probability of demand pi for each SKU i for

N total number of SKUs. The notation “100x/100F (x) indicates that 100x percent of the items

represents 100F (x) percent of the total demand where F (x) is the cumulative percent demand and

x is a fraction of the total number of items stored. The model uses “(px) percent of the total

number of items stored” and “(ptd) percent of the total demand” as parameters to calculate S

as a shape factor which determines the skewness of the demand frequency curve. For a demand

skewness pattern of 20/40 (i.e., twenty percent of the most frequently picked SKUs constitute forty

percent of the picks), the value of S is 0.60. S is 0.20 and 0.07 for the demand skewness patterns

of 20/60 and 20/80, respectively. The random storage policy can also be represented by this model

as a 20/20 demand skewness pattern with a large value of S (Pohl et al., 2011). The shape factor

S is determined from:

S =
px− ptd×px

100

ptd− px
(21)

Bender (1981) represents the demand frequency curve with the model:

F (x) =
(1 + S)x

S + x
(22)

The probability pi of demand for SKU i is determined from

pi = F

(
i

N

)
− F

(
i− 1

N

)
(23)

First, select “Generate” from the drop-down list. In this way, the system will generate pick list

data instead of importing it from a spreadsheet. To achieve this, the parameter values in Table 8

are used:

26

Table 8: Parameter values for pick list data generation in this example

Parameter Value

Percent of the total number of items stored (px) 20
Percent of the total demand (ptd) 80
of SKUs (N) 1000
of Pick Lists 266
Pick List Size 30
Order Generation Random Seed 0

Pick list size determines how many SKUs are in a single pick list. The seed number for random

number generation creates different sets of pick lists with the same skewness, N , and pick list size.

Once these parameters are set, click the “Import SKUs” button to generate SKUs and then

click the “Import Order” button to generate the 266 pick lists. The “Max Iteration” parameter

for the optimization algorithm (ES) is set to 500 which is a good balance between global and local

search with the default values. “Mu” and/or “Lambda” values can be increased to perform a more

exhaustive search but this will increase the computational time and memory usage. To start the

optimization process, click the “Solve ES” button. GABAK will then automatically generate and

evaluate many warehouse designs over the 19 design classes, iterating to find the final design. This

optimization took 18 hours 22 minutes 57 seconds on a 8-core (16 logical core) computer with 8GB

RAM. Computers with more CPU cores will achieve a faster execution because GABAK can use

those additional cores during optimization (Ozden et al., 2017). During the optimization process,

GABAK creates a folder (see Figure 11) on the computer so the user can see the graphics of the

best designs found at each iteration (it does not create a new drawing if the best design does not

change at the next iteration). GABAK also creates a spreadsheet in the same folder that logs the

optimization process. Figure 12 shows the best design at the end of the optimization process.

Figure 11: Experiment folder for optimization shows the different best designs identified over the course of the
optimization and the log

GABAK can also create animated videos to present how warehouse layouts evolve throughout

27

Figure 12: Best design at the end of the optimization

the optimization process. To do that, select from top Menu “Chart” and then select “New...”.

This will open a new window for the experiment folder and select the “experiment.csv” file. Once

the file is selected, the system creates a video in the same experiment folder (see Figure 13).

Figure 13: A screen shot from the video output. The video shows the best design found so far (below) and the best
objective function value at each iteration (above)

4.3. Comparing One and Two Block Traditional Warehouses with Varying Pick List Sizes

GABAK can import a spreadsheet to perform design of experiments batch optimization. The

user enters optimization parameters in a spreadsheet for each experiment (e.g., lower and upper

bounds for each variable such as aspect ratio or depot location, ES parameters such as maximum

iterations or initial sigma, and/or pick list data generation parameters such as number of SKUs or

number of pick lists). The system performs batch optimization and finds the best design for each

28

experiment. The user can then assess the robustness of designs to changes in variable values. We

show an example below.

We will examine how varying sizes of pick list affects the best layout from one block and two

block traditional layouts. In this example, we develop a design of experiments using a spreadsheet

and import this to GABAK to calculate the performance indicators for each experiment. Instead of

setting parameters for each experiment via the user interface, a spreadsheet saves time and reduces

possible data entry errors. In this design of experiments, we assumed a uniform demand among

1000 SKUs and tested pick list sizes of 1, 2, 3, 5, 10, and 30. Roodbergen and De Koster (2001b)

performed a similar experiment with varying pick list sizes from 1 to 50. They found that the two

block traditional layout performs better for all pick list sizes (except size 1).

Table 9: Design of experiments results

Average Travel Distance (ft.)

Pick List Size One Block Two Block % Diff

1 279 284 1.53
2 464 441 -5.04
3 590 542 -8.11
5 780 684 -12.2

10 1110 919 -17.17
30 1881 1524 -18.97

The traditional one block layout performed better than traditional two block layout (see Table 9)

when a single item is picked from the warehouse, consistent with the findings of Roodbergen and

De Koster (2001b). In every other case, the traditional two block layout had shorter average travel

distances per pick list. Researchers can use this experimental design feature to investigate layout

sensitivity and robustness to changes such as altering the depot location or modifying the demand

skewness.

4.4. Summary of Other Features and Potential Uses

In this section, we summarize other features of GABAK and their potential uses:

1. Along with the slotting algorithm already defined, GABAK can allocate products using a

dedicated storage policy. The first SKU goes to first location (based on location ID), the

second SKU goes to the second location, and so on. The first SKU is chosen on its order

of appearance if the data is imported. Each storage location gets an ID based on the order

created by the system. In this way, an organization which already has product allocation

defined can use this to explore designs and their performance.

2. Each optimization process produces a spreadsheet to keep a log of the best design found

at each iteration. These logs include all of the variables (such as aspect ratio, exterior

29

nodes, pick list size) needed to re-create the design. GABAK can also import designs from a

spreadsheet. A user can use this feature to fine tune the designs produced by the optimizer

without re-entering them manually.

5. Conclusions and Future Research

Warehouse design optimization for order picking operations is a complex task that involves

many variables and many algorithms. Open source tools for warehouse layout optimization did

not exist until the recently published GABAK under an MIT License. The main challenges of

developing GABAK were to design a comprehensive but compact representation of a warehouse

design, to specify the overall system architecture, and to develop efficient and effective algorithms

for each task, as well as to integrate the algorithms efficiently. Note that developing this system

was a very significant undertaking and GABAK contains more than 10,000 lines of code.

Although GABAK was designed for warehouse layout optimization, other applications can ben-

efit from it. Researchers could develop a module to export designs to a CAD design software or

export designs to an augmented reality software to test them in a simulated real world environ-

ment. The GABAK visualization capabilities could be used to understand the effects of different

shapes of warehouses and the video animation feature could assist researchers in warehouse layout

optimization analysis.

In future work, we plan to extend GABAK to different routing algorithms and storage policies.

Another enhancement is to add the option for more than one depot. Also we plan to use graphical

processing units to decrease the computational time of calculations. Finally, we are working on

a warehouse augmented reality software so that designs can be virtually tested for operational

practicality.

Acknowledgment

This research was supported in part by the National Science Foundation under Grant CMMI-

1200567. Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the authors and do not necessarily reflect the views of the National Science Foundation.

The authors would like to thank undergraduate and graduate research assistants Michael Robbins,

Ataman Billor, and Akhil Varma Jampana for data collection and testing the code. Source code

and binary files can be downloaded from https://github.com/gokhanozden/gabak.

30

https://github.com/gokhanozden/gabak

References

Accorsi, R., Manzini, R., Bortolini, M., 2012. A hierarchical procedure for storage allocation and

assignment within an order-picking system. a case study. International Journal of Logistics Re-

search and Applications 15 (6), 351–364.

Applegate, D., Bixby, R., Chvatal, V., Cook, W., 07 2019. Concorde tsp solver. http://www.math.

uwaterloo.ca/tsp/concorde.html, online Accessed 07.18.2019.

Baker, P., Canessa, M., 2009. Warehouse design: A structured approach. European Journal of

Operational Research 193 (2), 425–436.

Bender, P. S., 1981. Mathematical modeling of the 20/80 rule: theory and practice. Journal of

Business Logistics 2 (2), 139–157.

Berglund, P., Batta, R., 2012. Optimal placement of warehouse cross-aisles in a picker-to-part

warehouse with class-based storage. IIE Transactions 44 (2), 107–120.

Beroule, B., Grunder, O., Barakat, O., Aujoulat, O., 2017. Order picking problem in a warehouse

hospital pharmacy. IFAC-PapersOnLine 50 (1), 5017–5022.

Coit, D. W., Smith, A. E., Tate, D. M., 1996. Adaptive penalty methods for genetic optimization

of constrained combinatorial problems. INFORMS Journal on Computing 8 (2), 173–182.

Goetschalckx, M., Ratliff, H. D., 1988. Order picking in an aisle. IIE Transactions 20 (1), 53–62.

Gue, K. R., Meller, R. D., 2009. Aisle configurations for unit-load warehouses. IIE Transactions

41 (3), 171–182.

Hardy, A., Steeb, W.-H., 2008. Mathematical tools in computer graphics with C# implementations.

World Scientific Publishing Company.

Helsgaun, K., 2000. An effective implementation of the Lin-Kernighan traveling salesman heuristic.

European Journal of Operational Research 126, 106–130.

Henn, S., 2012. Algorithms for on-line order batching in an order picking warehouse. Computers

& Operations Research 39 (11), 2549–2563.

Meller, R. D., Gue, K. R., 2009. The application of new aisle designs for unit-load warehouses. In:

NSF Engineering Research and Innovation Conference. pp. 1–8.

31

http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.math.uwaterloo.ca/tsp/concorde.html

Ozden, S. G., 2017. A computational system to solve the warehouse aisle design problem. Ph.D.

thesis, Auburn University.

URL http://etd.auburn.edu/handle/10415/5761

Ozden, S. G., Smith, A. E., Gue, K. R., 2017. Solving large batches of traveling salesman problems

with parallel and distributed computing. Computers & Operations Research 85, 87–96.

Ozden, S. G., Smith, A. E., Gue, K. R., 2020. A novel approach for modeling order picking paths.

Naval Research Logistics.

URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.21966

Öztürkoğlu, Ö., Gue, K. R., Meller, R. D., 2012. Optimal unit-load warehouse designs for single-

command operations. IIE Transactions 44 (6), 459–475.

Öztürkoğlu, Ö., Gue, K. R., Meller, R. D., 2014. A constructive aisle design model for unit-load

warehouses with multiple pickup and deposit points. European Journal of Operational Research

236, 382–394.

Pansart, L., Catusse, N., Cambazard, H., 2018. Exact algorithms for the order picking problem.

Computers & Operations Research 100, 117–127.

Petersen, C. G., 1997. An evaluation of order picking routing policies. International Journal of

Operations & Production Management 17, 1098–1111.

Petersen, C. G., 1999. The impact of routing and storage policies on warehouse efficiency. Interna-

tional Journal of Operations & Production Management 19, 1053–1064.

Petersen, C. G., Aase, G., 2004. A comparison of picking, storage, and routing policies in manual

order picking. International Journal of Production Economics 92 (1), 11–19.

Pohl, L. M., Meller, R. D., Gue, K. R., 2011. Turnover-based storage in non-traditional unit-load

warehouse designs. IIE Transactions 43 (10), 703–720.

Ratliff, H. D., Rosenthal, A. S., 1983. Order-picking in a rectangular warehouse: a solvable case of

the traveling salesman problem. Operations Research 31, 507–521.

Rechenberg, I., August 1965. Cybernetic Solution Path of an Experimental Problem. Royal Aircraft

Establishment Library Translation No. 1122, Farnborough.

Reehuis, E., Bäck, T., 2010. Mixed-integer evolution strategy using multiobjective selection applied

to warehouse design optimization. In: Proceedings of the 12th annual conference on Genetic and

evolutionary computation. pp. 1187–1194.

32

http://etd.auburn.edu/handle/10415/5761
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.21966

Roodbergen, K. J., Mar. 2019a. Interactive warehouse. Online.

URL http://www.roodbergen.com/warehouse/frames.htm

Roodbergen, K. J., Feb. 2019b. Warehouse optimizer by Kees Jan Roodbergen. Online.

URL http://www.roodbergen.com/whopt/

Roodbergen, K. J., De Koster, R., 2001a. Routing methods for warehouses with multiple cross

aisles. International Journal of Production Research 39, 1865–1883.

Roodbergen, K. J., De Koster, R., 2001b. Routing order pickers in a warehouse with a middle aisle.

European Journal of Operational Research 133(1), 32–43.

Roodbergen, K. J., Sharp, G. P., Vis, I. F., 2008. Designing the layout structure of manual order

picking areas in warehouses. IIE Transactions 40 (11), 1032–1045.

Schwefel, H., 1965. Kybernetische evolution als strategie der exprimentellen forschung in der str-

mungstechnik. Master’s thesis, Technical University of Berlin.

Schwefel, H., 1975. Evolutionsstrategie und numerische optimierung. Ph.D. thesis, Technical Uni-

versity of Berlin.

Schwefel, H., 1977. Numerische Optimierung von Computer-Modellen mittels der Evolutionsstrate-

gie: mit einer vergleichenden Einfhrung in die Hill-Climbing-und Zufallsstrategie. Vol. 26.

Birkhäuser Basel.

Tompkins, J. A., 2010. Facilities Planning. John Wiley & Sons.

URL http://books.google.com/books?id=-xBIq6Qm2SQC

Vaughan, T. S., Petersen, C. G., 1999. The effect of warehouse cross aisles on order picking effi-

ciency. International Journal of Production Research 37, 881–897.

Walter, R., Boysen, N., Scholl, A., 2013. The discrete forward–reserve problem–allocating space,

selecting products, and area sizing in forward order picking. European Journal of Operational

Research 229 (3), 585–594.

33

http://www.roodbergen.com/warehouse/frames.htm
http://www.roodbergen.com/whopt/
http://books.google.com/books?id=-xBIq6Qm2SQC

Appendix A. Number of Locations and Distance Matrix Calculations

Table A.1: Notation for Appendix

Name Description

R set of regions

Pr set of pick aisles in region r

Kp
r set of pick locations in pth pick aisle in region r

SLrpk kth pick location’s left storage location node in region r’s pth pick aisle

SRrpk kth pick location’s right storage location node in region r’s pth pick aisle

TEMPNODES a set used for storing pick aisle intersection nodes with region edges

Algorithm A.1 Detailed Pseudo-code of the Algorithm that Returns the Total Number of Loca-
tions
function NumberofLocations(X,Y ,E,PD,A,H,V ,C,WA,AR,SLW ,SLD,CAW ,PAW)

WW =
√

WA
AR

WD =
√
WA×AR

CreateCornerEdges(CAW ,WW ,WD)
AddExteriorNodes(E)
AddInteriorNode(X,Y)
AddPickandDepositNode(PD) . This function is similar to AddExteriorNodes function
Connect all exterior and interior nodes based on C and add them as region edges
NL = 0; . Counter for total number of storage locations
if Any region edges intersect then

return -1 . Infeasible design, return a negative value
else

for r = 1; r ≤ |R|; r = r+ 1 do . Create pick aisles, pick locations, and storage locations
Find all region edges for region r and add them to region edge list REr

FillRegion(r,Ar, Hr, Vr)
end for
for r = 1; r ≤ |R|; r = r + 1 do

for p = 1; p ≤ |Pr|; p = p+ 1 do . Pr is the set of pick aisles in region r
for k = 1; k ≤ |Kp

r |; k = k + 1 do . Kp
r is the set of pick locations in pth pick

aisle in region r
if SLrpk exists then . If storage location on the left of pick location exists

NL = NL+ 1 . Increase number of storage locations counter
end if
if SRrpk exists then . If storage location on the right of pick location exists

NL = NL+ 1 . Increase number of storage locations counter
end if

end for
end for

end for
end if
return NL

end function

34

Algorithm A.2 Detailed Pseudo-code of the Algorithm that Creates Corner Nodes and Edges

function CreateCornerEdges(CAW ,WW ,WD)
n6x1 = CAW

2 . Top left corner x-axis

n6y1 = CAW
2 . Top left corner y-axis

n6x2 = WW − CAW
2 . Top right corner x-axis

n6y2 = CAW
2 . Top right corner y-axis

n6x3 = WW − CAW
2 . Bottom right corner x-axis

n6y3 = WD − CAW
2 . Bottom right corner y-axis

n6x4 = CAW
2 . Bottom left corner x-axis

n6y4 = WD − CAW
2 . Bottom left corner y-axis

Connect n61 and n62 . Top outer cross-aisle
Connect n62 and n63 . Right outer cross-aisle
Connect n63 and n64 . Bottom outer cross-aisle
Connect n64 and n61 . Left outer cross-aisle
return Corner nodes and corner edges

end function

35

Algorithm A.3 Detailed Pseudo-code of Adding Exterior Nodes

function AddExteriorNodes(E)
for i = 1; i < 5; i = i+ 1 do

templeft = −1
tempright = −1
if Ei == 0 then

n2xi = n6x1 . Assign it to top left corner x-axis
n2yi = n6y1 . Assign it to top left corner y-axis
templocation = 0 . Assign it to a smallest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the left

if Ej ≥ 0.75 and Ej < 1 then
if templocation < Ej then

templocation = Ej

templeft = j
end if

end if
end for
templocation = 1 . Assign it to a largest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the right

if Ej > 0 and Ej ≤ 0.25 then
if templocation > Ej then

templocation = Ej

tempright = j
end if

end if
end for
if templeft > −1 and tempright > −1 then

Disconnect n2templeft and n61
Disconnect n2tempright and n61
Connect n2templeft and n2i
Connect n2tempright and n2i

end if
if templeft > −1 and tempright == −1 then

Disconnect n2templeft and n61
Disconnect n61 and n62
Connect n2templeft and n2i
Connect n62 and n2i

end if
if templeft == −1 and tempright > −1 then

Disconnect n2tempright and n61
Disconnect n61 and n64
Connect n2tempright and n2i
Connect n64 and n2i

end if
if templeft == −1 and tempright == −1 then

Disconnect n61 and n62
Disconnect n61 and n64
Connect n64 and n2i
Connect n62 and n2i

end if
end if

36

Algorithm A.3 Detailed Pseudo-code of Adding Exterior Nodes (Part 2)

if Ei > 0 and Ei < 0.25 then
n2xi = (n6x2 − n6x1)× (Ei

0.25) + n6x1 . Assign x-axis somewhere on top outer aisle
n2yi = n6y1 . Assign it to top left corner y-axis
templocation = 0 . Assign it to a smallest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the left

if Ej ≥ 0 and Ej ≤ 0.25 then
if templocation < Ej then

templocation = Ej

templeft = j
end if

end if
end for
templocation = 1 . Assign it to a largest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the right

if Ej ≥ 0 and Ej ≤ 0.25 then
if templocation > Ej then

templocation = Ej

tempright = j
end if

end if
end for
if templeft > −1 and tempright > −1 then

Disconnect n2templeft and n2tempright

Connect n2templeft and n2i
Connect n2tempright and n2i

end if
if templeft > −1 and tempright = −1 then

Disconnect n2templeft and n62
Connect n2templeft and n2i
Connect n62 and n2i

end if
if templeft = −1 and tempright > −1 then

Disconnect n2tempright and n61
Connect n2tempright and n2i
Connect n61 and n2i

end if
if templeft = −1 and tempright = −1 then

Disconnect n61 and n62
Connect n61 and n2i
Connect n62 and n2i

end if
end if

37

Algorithm A.3 Detailed Pseudo-code of Adding Exterior Nodes (Part 3)

if Ei == 0.25 then
n2xi = n6x2 . Assign it to top right corner x-axis
n2yi = n6y2 . Assign it to top right corner y-axis
templocation = 0 . Assign it to a smallest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the left

if Ej ≥ 0 and Ej < 0.25 then
if templocation < Ej then

templocation = Ej

templeft = j
end if

end if
end for
templocation = 1 . Assign it to a largest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the right

if Ej > 0.25 and Ej ≤ 0.5 then
if templocation > Ej then

templocation = Ej

tempright = j
end if

end if
end for
if templeft > −1 and tempright > −1 then

Disconnect n2templeft and n62
Disconnect n2tempright and n62
Connect n2templeft and n2i
Connect n2tempright and n2i

end if
if templeft > −1 and tempright == −1 then

Disconnect n2templeft and n62
Disconnect n62 and n63
Connect n2templeft and n2i
Connect n63 and n2i

end if
if templeft == −1 and tempright > −1 then

Disconnect n2tempright and n62
Disconnect n62 and n63
Connect n2tempright and n2i
Connect n61 and n2i

end if
if templeft == −1 and tempright == −1 then

Disconnect n61 and n62
Disconnect n63 and n62
Connect n61 and n2i
Connect n63 and n2i

end if
end if

38

Algorithm A.3 Detailed Pseudo-code of Adding Exterior Nodes (Part 4)

if Ei > 0.25 and Ei < 0.5 then
n2xi = n6x2 . Assign it to top right corner x-axis
n2yi = (n6y3 − n6y2)× (Ei−0.25

0.25) + n6y2 . Assign y-axis somewhere on right outer aisle
templocation = 0 . Assign it to a smallest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the left

if Ej ≥ 0.25 and Ej ≤ 0.5 then
if templocation < Ej then

templocation = Ej

templeft = j
end if

end if
end for
templocation = 1 . Assign it to a largest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the right

if Ej ≥ 0.25 and Ej ≤ 0.5 then
if templocation > Ej then

templocation = Ej

tempright = j
end if

end if
end for
if templeft > −1 and tempright > −1 then

Disconnect n2templeft and n2tempright

Connect n2templeft and n2i
Connect n2tempright and n2i

end if
if templeft > −1 and tempright = −1 then

Disconnect n2templeft and n63
Connect n2templeft and n2i
Connect n63 and n2i

end if
if templeft = −1 and tempright > −1 then

Disconnect n2tempright and n62
Connect n2tempright and n2i
Connect n62 and n2i

end if
if templeft = −1 and tempright = −1 then

Disconnect n62 and n63
Connect n62 and n2i
Connect n63 and n2i

end if
end if

39

Algorithm A.3 Detailed Pseudo-code of Adding Exterior Nodes (Part 5)

if Ei == 0.5 then
n2xi = n6x3 . Assign it to bottom right corner x-axis
n2yi = n6y3 . Assign it to bottom right corner y-axis
templocation = 0 . Assign it to a smallest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the left

if Ej ≥ 0.25 and Ej < 0.5 then
if templocation < Ej then

templocation = Ej

templeft = j
end if

end if
end for
templocation = 1 . Assign it to a largest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the right

if Ej > 0.5 and Ej ≤ 0.75 then
if templocation > Ej then

templocation = Ej

tempright = j
end if

end if
end for
if templeft > −1 and tempright > −1 then

Disconnect n2templeft and n63
Disconnect n2tempright and n63
Connect n2templeft and n2i
Connect n2tempright and n2i

end if
if templeft > −1 and tempright == −1 then

Disconnect n2templeft and n63
Disconnect n64 and n63
Connect n2templeft and n2i
Connect n64 and n2i

end if
if templeft == −1 and tempright > −1 then

Disconnect n2tempright and n63
Disconnect n62 and n63
Connect n2tempright and n2i
Connect n62 and n2i

end if
if templeft == −1 and tempright == −1 then

Disconnect n62 and n63
Disconnect n63 and n64
Connect n62 and n2i
Connect n64 and n2i

end if
end if

40

Algorithm A.3 Detailed Pseudo-code of Adding Exterior Nodes (Part 6)

if Ei > 0.5 and Ei < 0.75 then
n2xi = n6x3 − (n6x3 − n6x4)× (Ei−0.5

0.25) . Assign x-axis somewhere on bottom outer aisle
n2yi = n6y3 . Assign it to bottom right corner y-axis
templocation = 0 . Assign it to a smallest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the left

if Ej ≥ 0.5 and Ej ≤ 0.75 then
if templocation < Ej then

templocation = Ej

templeft = j
end if

end if
end for
templocation = 1 . Assign it to a largest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the right

if Ej ≥ 0.5 and Ej ≤ 0.75 then
if templocation > Ej then

templocation = Ej

tempright = j
end if

end if
end for
if templeft > −1 and tempright > −1 then

Disconnect n2templeft and n2tempright

Connect n2templeft and n2i
Connect n2tempright and n2i

end if
if templeft > −1 and tempright = −1 then

Disconnect n2templeft and n64
Connect n2templeft and n2i
Connect n64 and n2i

end if
if templeft = −1 and tempright > −1 then

Disconnect n2tempright and n63
Connect n2tempright and n2i
Connect n63 and n2i

end if
if templeft = −1 and tempright = −1 then

Disconnect n63 and n64
Connect n63 and n2i
Connect n64 and n2i

end if
end if

41

Algorithm A.3 Detailed Pseudo-code of Adding Exterior Nodes (Part 7)

if Ei == 0.75 then
n2xi = n6x4 . Assign it to bottom left corner x-axis
n2yi = n6y4 . Assign it to bottom left corner y-axis
templocation = 0 . Assign it to a smallest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the left

if Ej ≥ 0.5 and Ej < 0.75 then
if templocation < Ej then

templocation = Ej

templeft = j
end if

end if
end for
templocation = 1 . Assign it to a largest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the right

if Ej > 0.75 and Ej < 1 then
if templocation > Ej then

templocation = Ej

tempright = j
end if

end if
end for
if tempright == −1 then . Check if closest on the right is on the top left corner

for j = 1; j < i; j = j + 1 do
if Ej == 0 then

tempright = j
end if

end for
end if
if templeft > −1 and tempright > −1 then

Disconnect n2templeft and n64
Disconnect n2tempright and n64
Connect n2templeft and n2i
Connect n2tempright and n2i

end if
if templeft > −1 and tempright == −1 then

Disconnect n2templeft and n64
Disconnect n64 and n61
Connect n2templeft and n2i
Connect n61 and n2i

end if
if templeft == −1 and tempright > −1 then

Disconnect n2tempright and n64
Disconnect n63 and n64
Connect n2tempright and n2i
Connect n63 and n2i

end if
if templeft == −1 and tempright == −1 then

Disconnect n61 and n64
Disconnect n63 and n64
Connect n64 and n2i
Connect n61 and n2i

end if
end if

42

Algorithm A.3 Detailed Pseudo-code of Adding Exterior Nodes (Part 8)

if Ei > 0.75 and Ei < 0.1 then
n2xi = n6x4 . Assign it to bottom left corner x-axis
n2yi = n6y4 − (n6y4 − n6y1)× (Ei−0.75

0.25) . Assign y-axis somewhere on left outer aisle
templocation = 0 . Assign it to a smallest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the left

if Ej ≥ 0.75 and Ej < 1 then
if templocation < Ej then

templocation = Ej

templeft = j
end if

end if
end for
templocation = 1 . Assign it to a largest possible value
for j = 1; j < i; j = j + 1 do . If exists, find the closest exterior node on the right

if Ej ≥ 0.75 and Ej < 1 then
if templocation > Ej then

templocation = Ej

tempright = j
end if

end if
end for
if tempright == −1 then . Check if closest on the right is on the top left corner

for j = 1; j < i; j = j + 1 do
if Ej == 0 then

tempright = j
end if

end for
end if
if templeft > −1 and tempright > −1 then

Disconnect n2templeft and n2tempright

Connect n2templeft and n2i
Connect n2tempright and n2i

end if
if templeft > −1 and tempright = −1 then

Disconnect n2templeft and n61
Connect n2templeft and n2i
Connect n61 and n2i

end if
if templeft = −1 and tempright > −1 then

Disconnect n2tempright and n64
Connect n2tempright and n2i
Connect n64 and n2i

end if
if templeft = −1 and tempright = −1 then

Disconnect n64 and n61
Connect n64 and n2i
Connect n61 and n2i

end if
end if

end for
end function

43

Algorithm A.4 Detailed Pseudo-code of Adding an Interior Node

function AddInteriodNode(X,Y) . y-axis increases by going downwards

n3x = (n6x2 − n6x1)×X + n6x1 . Assign x-axis for interior node

n3y = (n6y3 − n6y2)× Y + n6y2 . Assign y-axis for interior node
end function

44

Algorithm A.5 Detailed Pseudo-code of Populating a Region with Pick Aisles, Pick Locations,
and Storage Locations

function FillSingleRegion(pR, pA, pH, pV) . pR is region index,pA is the angle of the
region, pH is the horizontal adjuster parameter, pV is the vertical adjuster parameter

bx = 0 . base coordinate x-axis (used for rotation)
by = 0 . base coordinate y-axis (used for rotation)
for i = 1; i ≤ |ed2pR|; i = i+ 1 do . ed2pR is set of region edges in region pR

Rotate ed2ipR by angle pA . Rotate them to create angled pick aisles
end for
minx = M . M is a big number
miny = M
maxx = −M
maxy = −M

. Find the bounding box (circumscribed rectangle) of the region
for i = 1; i ≤ |ed2pR|; i = i+ 1 do

if ed2sxipR > maxx then . ed2sxipR is the starting node x-axis for region edge i

maxx = ed2xipR . Update bounding edges’ largest x-axis
end if
if ed2syipR > maxy then . ed2syipR is the starting node y-axis for region edge i

maxy = ed2syipR . Update bounding edges’ largest y-axis
end if
if ed2exipR > maxx then . ed2exipR is the ending node x-axis for region edge i

maxx = ed2xipR . Update bounding edges’ largest x-axis
end if
if ed2eyipR > maxy then . ed2eyipR is the ending node y-axis for region edge i

maxy = ed2yipR . Update bounding edges’ largest y-axis
end if
if ed2sxipR < minx then . ed2sxipR is the starting node x-axis for region edge i

minx = ed2xipR . Update bounding edges’ smallest x-axis
end if
if ed2syipR < miny then . ed2syipR is the starting node y-axis for region edge i

miny = ed2syipR . Update bounding edges’ smallest y-axis
end if
if ed2exipR < minx then . ed2exipR is the ending node x-axis for region edge i

minx = ed2xipR . Update bounding edges’ smallest x-axis
end if
if ed2eyipR < miny then . ed2eyipR is the ending node y-axis for region edge i

miny = ed2yipR . Update bounding edges’ smallest y-axis
end if

end for
gap = PAW + 2× SLD
i = 0

. Add angled pick aisles considering horizontal adjuster
while miny + i× gap+ pH × gap ≤ maxy do

startx = minx . Starting x coordinate for temporary edge
starty = miny + i× gap+ pH × gap . Starting y coordinate for temporary edge
endx = maxx . Ending x coordinate for temporary edge
endy = miny + i× gap+ pH × gap . Ending y coordinate for temporary edge
Create a temporary edge tempedge for above coordinates
Rotate back temporary edge by angle pA
Create a temporary set of intersection nodes TEMPNODES

45

Algorithm A.5 Detailed Pseudo-code of Populating a Region with Pick Aisles, Pick Locations,
and Storage Locations (Part 2)

for j = 1; j ≤ |ed2pR|; j = j + 1 do . Check how many times tempedge intersects with
the region edges for region pR

if tempedge intersects with ed2jpR then
Add intersection point to set TEMPNODES

end if
end for
if |TEMPNODES| == 2 then . Two intersections means only one pick aisle

Create temporary pick aisle with TEMPNODES1 & TEMPNODES2 .
TEMPNODES1 is the first element of the set

if AddPickAisleEdge(TEMPNODES1, TEMPNODES2, pR, pA, pV) == true
then

Add this temporary pick aisle to PpR set . PICKAISLEpR set includes all the
pick aisles in region pR

end if
end if
if |TEMPNODES| == 4 then . Four intersections means two pick aisles

Create temporary pick aisle with TEMPNODES1 & TEMPNODES2

if AddPickAisleEdge(TEMPNODES1, TEMPNODES2, pR, pA, pV) == true
then

Add this temporary pick aisle to PpR set
end if
Create temporary pick aisle with TEMPNODES3 & TEMPNODES4

if AddPickAisleEdge(TEMPNODES3, TEMPNODES4, pR, pA, pV) == true
then

Add this temporary pick aisle to PpR set
end if

end if
. We don’t need to check for 6 intersection points because we only have one interior

node, it can only create two picking aisle edges from a single tempedge
i = i+ 1

end while
end function

46

Algorithm A.6 Detailed Pseudo-code of Adding a Picking Aisle Inside a Region

function AddPickAisleEdge(tempnode1, tempnode2, pR, pA, pV, p) . y-axis increases by
going downwards

XS = tempnode1x . Assign x-axis for interior node
XE = tempnode2x

Y S = tempnode1y

Y E = tempnode2y . Assign y-axis for interior node
lengthofaisle =

√
(XS −XE)2 + (Y S − Y E)2

numberofpicklocations = dlengthofaisle/SLW e
k = 1
incx = (XE −XS)/(lengthofaisle/SLW)
incy = (Y E − Y S)/(lengthofaisle/SLW)
PLX = XS + incx ∗ pV . Shift pick location vertically
PLY = Y S + incy ∗ pV . Shift pick location vertically
for i = 1; i ≤ numberofpicklocations; i = i+ 1 do

. Calculate four corners of left storage location below
Xl1 = PLX − incx/2− (PAW/2 + SLD) ∗ cos pA
Y l1 = PLY − incy/2− (PAW/2 + SLD) ∗ sin pA
Xl2 = PLX − incx/2− (PAW/2) ∗ cos pA
Y l2 = PLY − incy/2− (PAW/2) ∗ sin pA
Xl3 = PLX + incx/2− (PAW/2 + SLD) ∗ cos pA
Y l3 = PLY + incy/2− (PAW/2 + SLD) ∗ sin pA
Xl4 = PLX + incx/2− (PAW/2) ∗ cos pA
Y l4 = PLY + incy/2− (PAW/2) ∗ sin pA
. Check if the left storage location is completely inside the region without touching any

cross aisles (region edges) surrounding the region pR
if All four corners are inside the region pR then

Add the storage location’s pick location to set Kp
pR . Set Kp

pR only contains the pick
locations

Add the storage location and its four corner coordinates to object SLpRpk . Object
SLpRpk contains all left side storage location information for region pR’s pth pick aisle

k = k + 1
end if

. Calculate the four corners of right storage location below
Xr1 = PLX − incx/2− (PAW/2) ∗ cos pA
Y r1 = PLY − incy/2− (PAW/2) ∗ sin pA
Xr2 = PLX − incx/2− (PAW/2 + SLD) ∗ cos pA
Y r2 = PLY − incy/2− (PAW/2 + SLD) ∗ sin pA
Xr3 = PLX + incx/2− (PAW/2) ∗ cos pA
Y r3 = PLY + incy/2− (PAW/2) ∗ sin pA
Xr4 = PLX + incx/2− (PAW/2 + SLD) ∗ cos pA
Y r4 = PLY + incy/2− (PAW/2 + SLD) ∗ sin pA

. Check if the right storage location is completely inside the region without touching
any cross aisles (region edges) surrounding the region pR

if All four corners are inside the region pR then
Add the storage location’s pick location to set Kp

pR . Set Kp
pR only contains the pick

locations
Add the storage location and its four corner coordinates to object SRpRpk . Object

SRpRpk contains all right side storage location information for region pR’s pth pick aisle
k = k + 1

end if
PLX = PLX + incx
PLY = PLY + incy

end for

47

Algorithm A.6 Detailed Pseudo-code of Adding a Picking Aisle Inside a Region (Part 2)

if k > 1 then . At least one storage location has been created in this pick aisle
return true

else
return false

end if
end function

48

Algorithm A.7 Detailed Pseudo-code of the Algorithm that Calculates the Distances Between
Locations
function LOCATIONDISTANCES(X,Y ,E,PD,A,H,V ,C,WA,AR,SLW ,SLD,CAW ,PAW)

WW =
√

WA
AR

WD =
√
WA×AR

CreateCornerEdges(CAW ,WW ,WD)
AddExteriorNodes(E)
AddInteriorNode(X,Y)
AddPickandDepositNode(PD) . This function is similar to AddExteriorNodes function
Connect all exterior and interior nodes based on C and add them as region edges
count = 0;
if Any region edges intersect then

return NULL . Infeasible design, return a null value
else

for r = 1; r ≤ |R|; r = r+ 1 do . Create pick aisles, pick locations, and storage locations
Find all region edges for region r and add them to region edge list REr

FillRegion(r,Ar, Hr, Vr)
end for
Add pick and deposit node to set G . Set G contains all visibility graph nodes, first

element in G is pick and deposit node
Add all pick location nodes to set G
Add all storage location nodes to set G
for m = 1;m ≤ |G|;m = m+ 1 do

for n = 1;n ≤ |G|;n = n+ 1 do
if mth node is visible to nth node then . Check if any storage location is

blocking the visibility between two nodes
Connect these two nodes

end if
end for

end for
Calculate all-pairs shortest distances in set G using Djikstra’s Algorithm and store the

distances in V Dmn . V Dmn stores the shortest path distances between two nodes
i = 0
j = 0
for m = 1;m ≤ |G|;m = m+ 1 do

if mth node is a pick and deposit node or a pick location node then
i = i+ 1

end if
for n = 1;n ≤ |G|;n = n+ 1 do

if mth node is a pick and deposit node or a pick location node then
j = j + 1
Dij = V Dmn . Assign distance between locations i and j

end if
end for

end for
end if
return Distance Matrix D

end function

49

Appendix B. Example Pick List Data

Table B.2: Example of pick list data

Pick List ID SKU Number

554468267 5161503
554468267 5161484
554468267 5161233
554468267 5138240
554468267 5161479
554468267 5161508
554468267 5161509
554468267 5161500
554468267 5162844
554468267 5161514
554468267 5151474
554468267 5161880
554468267 5162903
554468267 5161274
554468267 5161506
554468267 5162856
554468267 5130474
554469595 5140361
554469595 5058449
554469595 5127923
554469595 5062709
554469595 5138570
554469595 8551077
554469595 5124380
554469621 5136796
554469621 5136575
554469621 8661263
554469636 5157448
554469636 8681215
554469636 5140634
554469636 8681340
554469636 5142120
554469636 5117450
554469636 5014508
554469636 5011400
554469636 5011292
554469636 5017113
554469636 5125939
554469636 8681056
554469636 5158308
554469636 5012778
554469636 5127696
554469636 5156275
554469636 5126655
554469636 5117448
554469636 8681002
554469636 5158113
554469636 8681264

50

Appendix C. Explanation of the Region Finding Algorithm

GABAK has an algorithm that finds the closed regions in a plane (and labels them as Region

1, Region 2, Region 3, etc.). However, the algorithm does not work in a clockwise or a counter-

clockwise manner. Therefore, we cannot label regions in a straightforward way. We explain this

with an example below.

1 2 3

4

5

67

8

9

10

11

12 13

14

1516

1718

Figure C.1: A depiction of directed edges

Figure C.1 is an example of a 3-0-2 design. Three exterior nodes are located at E1 = 0.0416

(top left end of the cross aisle), E2 = 0.2083 (top right end of the cross aisle), and E3 = 0.625.

E1 and E3 are connected forming a cross aisle (the C13 variable is set to 1). E2 and E3 are also

connected forming another cross aisle (the C23 variable is set to 1). The region finding algorithm

finds three regions in the following way:

All region edges are identified from the definitions of the exterior nodes and interior nodes and

their connections with cross aisles. The region finding algorithm creates two directed edges from

these undirected region edges. The direction of each edge is arbitrary and does not change the

number of regions but may change the order of the labeling. We add all positive and negative

directed edges to a list of unvisited edges. Then we pick one unvisited directed region edge (the

starting edge changes the order of the labeling as well, and we always pick the first one in the

unvisited list) but it is not yet marked as visited (i.e., it is not removed from the list). We start to

visit the rightmost unvisited directed edge and mark it as visited by removing it from the unvisited

list, and keep visiting to next rightmost turn unvisited directed edge until we come back to the

original starting directed edge and mark the starting directed edge as visited (i.e., remove it from

the unvisited list). All of the edges we visited will be removed from the list so they are not visited

51

again. This is a region. The algorithm continues to find all regions similarly. At the end, all edges

are visited and an additional region is removed; this is the whole warehouse itself. Below shows

how the algorithm calculates the regions for the above example (assuming the first directed edge

in the unvisited edges list is the edge number 1 in Figure C.1).

• Starting edge is #1: 16 → 8 → 9 → 1 (Region #1)

• Starting edge is #2: 15 → 7 → 2 (Region #2)

• Starting edge is #3: 4 → 5 → 6 → 3 (Region #3)

• Starting edge is #10: 11 → 12 → 13 → 14 → 17 → 18 → 10 (Outer Region, largest area

among others - the entire warehouse, is removed from the set of regions)

52

	Introduction
	Literature Review
	Methodology
	General Framework
	Assumptions
	Importing Pick List Data
	Warehouse Design Classes
	Model Formulation
	Searching the Design Space
	Re-sizing the Warehouse and Penalizing Excess Locations
	Evolutionary Strategies Meta-heuristic
	Evaluation
	Storage (Product Allocation / Slotting)
	Selecting a Routing Method
	Optional Dynamic Sampling of Pick Lists
	User Interface
	Validation of the Optimization Algorithm

	Example Instances and Usage
	Comparing One Block and Two Block Traditional Layouts
	Optimizing a Warehouse Design for Generated Pick Lists
	Comparing One and Two Block Traditional Warehouses with Varying Pick List Sizes
	Summary of Other Features and Potential Uses

	Conclusions and Future Research
	Number of Locations and Distance Matrix Calculations
	Example Pick List Data
	Explanation of the Region Finding Algorithm

