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Abstract—The problem of improving the environmental 
performance of a supply chain without entailing excessive cost is 
becoming a frequent problem as companies face an increasing 
pressure from governments and customers for reducing the 
environmental impact of their activities. As the environmental 
improvement of an operating supply chain implies not only 
technology upgrading decisions, but also decisions regarding the 
structure of the supply chain itself; deciding on what strategy to 
follow is a complex task. The aim of this work is to provide a bi-
objective solution approach for finding such strategy so that both 
the environmental and financial goals are best met. 

Keywords—Sustainability, supply chain design, multi-objective 
optimization, evolutionary computation 

I. INTRODUCTION 
A supply chain is considered to be sustainable if two 

conditions are met: first, it should continue to be profitable in 
the future; and second, it should be accountable for no harm to 
the environment and the society [1]. From the environmental 
perspective, most companies today face a steady growing 
pressure to alleviate the environmental impact directly related to 
their operation, not only from governments, but also from their 
customers, as they become more environmentally aware [2]. In 
this context, companies are concerned with the problem of 
assessing the environmental impacts of their supply chains so 
that action can be taken to mitigate them. In particular, the 
amount of CO2 emissions resulting from their operations, also 
known as the carbon footprint, has emerged as the international 
standard to assess the environmental impact of a given company. 
According to the 2014 annual report of the Intergovernmental 
Panel on Climate Change [3], global industrial greenhouse gas 
emissions accounted for about 30% of the total greenhouse gas 
emissions in 2010, not including the sectors of power generation 
and transportation; and CO2 accounted for approximately 85% 
of the total emissions in 2010 [3]. According to the United States 
Environmental Protection Agency (EPA), in 2010 the supply 
chain of a typical industrial organization was responsible for 
around two thirds of the total emissions of the company [4]. 
Finally, the authors in [3] conclude that the energy intensity of 
the industrial sector “could be reduced by approximately up to 
25% compared to current level through the wide-scale 
deployment of best available technologies, particularly in 
countries where these are not in practice and for non-energy 
intensive industries”. Which means that there is room for 

significant environmental improvement of many supply chains 
currently in operation. 

We focus our attention on the cement industry given its high 
demand, large energy use and substantial emissions of CO2. The 
reason for its high demand is that concrete is the second most 
consumed material worldwide, only surpassed by water [6]; and 
a typical concrete mix contains around 10% to 15% of cement. 
This, combined with the fact that its worldwide demand is 
expected to grow around 1.3% per year in the near term [7], 
explains the claim. Regarding energy use, the cement industry 
consumed around 8.5% of the total industrial energy consumed 
in 2012 [7]. Regarding the emissions of CO2, in 2012 it was 
estimated that the production of one metric ton of cement 
releases to the environment between 650 and 950 Kg of CO2. 
Approximately 50% of this total comes from the chemical 
reaction that takes place when the calcium carbonate (CaCO3) is 
fed into a kiln to produce clinker, the main component of 
cement. The actual value of emissions depends mainly on the 
technology used in the production process, the sources of heat 
and electricity, and the raw materials mix [8, 9]. In summary, 
the cement industry is responsible for around 5% of the human-
produced CO2, and 34% of total industry CO2 emissions [6]. 
These elements combined show the relevance of reducing the 
environmental impact of this industry. 

Researchers in the field agree on the opportunity around 
reducing the environmental impact of current industrial 
processes by using cleaner fuels and more energy efficient 
processes. On the other hand, the need of a simultaneous 
evaluation of both environmental and financial aspects has been 
widely recognized from the point of view of the supply chain 
design. Several literature reviews have been recently published 
in the areas of sustainable supply chain management [10-12], 
green supply chain management [13, 14], and sustainable supply 
chain network design [15]. In this work we extend a previous 
study in which the authors propose a multi-objective mixed 
integer linear programming (MILP) formulation for solving the 
problem of finding the best supply chain configuration with the 
objective of balancing two conflicting objectives: emissions of 
CO2 and total cost [16]. To achieve this goal, the model 
considers the current state of the supply chain, and allows for 
adopting cleaner technologies at various capacity levels and 
more efficient fuels within a cement supply chain that is 
currently in operation. Other similar research works related to 
the problem under study that we are aware of are those of 



references [17-19] as these works consider improving the 
environmental performance of a supply chain that is currently in 
operation. In [17] the authors addressed the problem of 
determining the configuration of a three-echelon supply chain 
with the objectives of maximizing the net present value and 
minimizing the environmental impact, whereas in [18] the 
authors expanded the scope by allowing uncertainty associated 
with the parameters representing the assessment of the different 
environmental impacts. A simulation approach is presented in 
[19] to select the best of three supply chain scenarios for the 
cement industry: make-to-stock, pack-to-order, and grind-to-
order. To make the decision, the simulation integrates economic, 
environmental and social dimensions. A detailed analysis of the 
above mentioned references shows that among operations 
research techniques, multi-objective optimization is one of the 
most common solution approaches used to tackle these 
problems. However, to the best of our knowledge, the crucial 
subject of technology update decisions in the context of an 
operating supply chain, and the impact of these decisions on the 
environmental and financial performance of a firm, has not 
received due attention in the literature. Heuristic approaches 
cannot be compared to MILP approaches solving the problems 
optimally. However, they can provide promising solutions for 
both larger and nonlinear variants of the environmental 
optimization problems. The aim of this work is to extend the 
work in [16] by providing a heuristic solution approach for the 
problem of simultaneously selecting a technological upgrade 
strategy and designing a new network configuration for an 
operating supply chain, that takes into consideration the current 
state of the system, and that considers the environmental and 
financial implications of the recommended solutions. 

II. MATHEMATICAL MODEL 
Here we present the mixed integer linear formulation 

(MILP) originally proposed in [16] with a minor modification 
that allows for changing only the fuel in a given facility, without 
changing the technology nor the capacity level. 

A. Sets 
• F: facilities 

• Ti: Available technologies for facility i∈F 

• Qij: Available capacities for technology j∈Ti at facility 
i∈F 

• Lijk: Fuels available for technology j∈Ti at facility i∈F 
with capacity qijk 

• C: Customers 

B. Parameters 
• hi: Annualized cost of taking facility i∈F out of 

operation. 

• qi
0: Current capacity at facility i∈F 

• fi
0: Current annual fixed cost at facility i∈F 

• vi
0: Current variable unit cost at facility i∈F 

• αi
0: Current unitary thermal energy consumption at 

facility i∈F 

• βi
0: Current unitary electrical energy consumption at 

facility i∈F 

• γi
0: Current unitary cost of thermal energy associated 

with the fuel used at facility i∈F 

• ei
0: Current unitary emissions of CO2 due to thermal 

energy associated with the fuel used at facility i∈F 

• qijk: The k-th capacity value in Qij 

• sijkr: Annualized cost of installing technology j∈Ti at 
facility i∈F with capacity qijk and operated with fuel 
r∈Lijk 

• fijkr: Annualized fixed cost associated with technology 
j∈Ti with capacity qijk and operated with fuel r∈Lijk at 
facility i∈F 

• vijkr: Variable unit cost associated with technology j∈Ti 
with capacity qijk and operated with fuel r∈Lijk at facility 
i∈F 

• αijkr: Unitary thermal energy consumption of technology 
j∈Ti with capacity qijk and operated with fuel r∈Lijk at 
facility i∈F 

• βijkr: Unitary electrical energy consumption of 
technology j∈Ti with capacity qijk and operated with fuel 
r∈Lijk at facility i∈F 

• γr: Unitary cost of the thermal energy when generated 
with fuel r∈Lijk 

• er: Unitary emissions of CO2 per unit of thermal energy 
generated with fuel r∈Lijk 

• η: Unitary cost of the electrical energy 

• θ: Cost of transporting one unit of product for one unit 
of distance 

• μ: Emissions of CO2 per unit of product due to the 
chemical reaction in the cement production process 

• ψ: Emissions of CO2 per unit of electrical energy used 

• ρ: Emissions of CO2 due to the transportation of one unit 
of product for one unit of distance 

• dic: Distance from facility i∈F to customer c∈C 

• δc: Demand of customer c∈C 

C. Decision Variables 
• zi: Binary variable such that zi=1 if facility i∈F is kept 

in operation; and zi=0 if otherwise. 

• ui: Binary variable such that ui=1 if it is decided to 
change the technology and/or the capacity and/or fuel at 
facility i∈F; and ui=0 if otherwise 

• yijkr: Binary variable such that yijkr=1 if technology j ∈ 
Ti is installed at facility i∈F with capacity qijk and 
operated with fuel r∈Lijk 



• xijkr: Continuous variables representing the production 
quantity assigned to facility i∈F, produced with 
technology j∈Ti with capacity qijk and operated with fuel 
r∈Lijk 

• πi: Continuous variables representing the amount of 
product that facility i∈F will continue to produce with 
its current technology and capacity 

• wic: Continuous variables representing the amount of 
product shipped from facility i∈F to customer c∈C 

D. Cost Expressions 
• Setup: 
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• Production: 
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• Thermal energy: 
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• Electrical energy: 
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• Transportation: 
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E. Emissions of CO2 Expressions 
• Production: 
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• Electrical energy: 
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• Transportation: 
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Let TC be the total cost, computed as the sum of expressions 
(1) to (7); and let TE be the total emissions of CO2, computed as 
the sum of expressions (8) to (11). A MILP formulation to the 
problem under study follows. 

 Min{TC, TE} (12) 

Subject to: 
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The objective (12) is to minimize the total cost and the total 
emissions of CO2. Constraints in (13) ensure that if it is decided 
to change the current technology at a given facility, one single 
option should be chosen. Constraints in (14) ensure that a 
technology upgrade can only be undertaken in a facility if the 
facility is kept in operation. Expressions (15) and (16) 
correspond to the capacity constraints in the case of a change in 
the current technology at a given facility. Constraints in (15) and 
(16) ensure that the production quantity assigned to a facility lies 
within the corresponding capacity interval in the case when it is 
decided to change the technology at a given facility. Similarly, 
expression (17) corresponds to capacity constraints for the case 
when it is decided not to change the technology at a given 
facility. Constraints in (18) and (19) are required to enforce flow 
balance, whereas the constraints that define the domains of the 
decision variables can be deduced from their definition. 

III. METAHEURISTIC OPTIMIZATION MODELS 
We modeled two heuristic optimization methods using 

Evolutionary Strategies (ES). ES is a population based 
metaheuristic optimization algorithm that uses biology inspired 
mechanisms such as mutation, crossover, and survival of the 
fittest in order to refine a set of solution candidates iteratively. 
The advantage of ES compared to other optimization methods 



is its “black box” character that makes only few assumptions 
about the underlying objective functions. Moreover, it is simple 
and applicable to any type of problems in continuous domain. 
ES uses primarily mutation and selection as search operators. 
The operators are applied in a loop and an iteration of the loop 
is called a generation. In our solution representation, we used 
real numbers between 0 and 1, therefore mutation is performed 
by adding a normally distributed random value to each element 
of the matrix. The mutated strategy parameter σ controls the 
mutation strength. We select a (µ+λ) strategy as our population 
strategy. The sigma value changes according to the 1/5 rule 
[20]. Therefore, the algorithm is self-adaptive in terms of 
generating new solutions. The structure of the ES algorithm is 
shown in Figure 1. In order to handle violated constraints, we 
used the near feasibility threshold (NFT) penalty method 
described in [21]. Since the search can benefit from searching 
areas outside the feasible region, the NFT penalty method gives 
some infeasible solutions a chance to be in the population by 
penalizing less at early generations, but it penalizes much more 
as generations evolve. The continuous search space contains a 
large number of infeasible solutions due to over and under 
capacitated facilities. Therefore, we selected a basic mutation-
only ES, a continuous optimization method that explores both 
infeasible and feasible regions. However, it escapes from 
infeasible regions through the use of the NFT penalty method.  
 

1: for all parents i in population of size µ do 
2: Initialize x-vector randomly between its bounds 
3: Calculate x-fitness value 
4: end for 
5: while maximum iterations not reached do 
6: for all offspring j in children population do 
7: Select a parent x randomly 
8: Draw z-vector from the normal distribution N(0, σ2) 
9: y-vector = x + z 
10: if f (y) < f (x) then 
11: increase success rate  
12: else 
13: decrease success rate 
14: end if 
15: end for 
16: Join parent and children population and select µ fittest 
for the next generation 
17: if successrate > 0.2 then 
18: σ = σ/0.85 //Increase sigma 
19: else 
20: σ = σ ∗ 0.85 //Decrease sigma 
21: end if 
22: end while 

Figure 1 - Pseudo-code for the ES 
 

Our problem includes a linear transportation problem which 
is a well-known problem in supply chain management. There 
exist exact methods such as the stepping stone method [22] and 
heuristic approaches such as an initialization procedure with 
genetic algorithms [23] that solve the linear transportation 
problem effectively. Therefore, we incorporated these methods 

into our search algorithms. The first method utilizes a local 
search procedure for the transportation part of the problem 
using the stepping stone method [22]. The idea is that the entire 
transportation table is assumed to be a pond and cells that are 
occupied are the stones. These stones move in a certain way 
within the pond to cross it. The second method incorporates 
problem specific knowledge discussed in [23] which is called 
the initialization procedure. It satisfies all balance constraints 
by generating a matrix of at most F + C – 1 nonzero elements. 
The authors noted that there are several sequences of numbers 
where the initialization procedure would produce the optimal 
solution. The modified version of the initialization procedure in 
[23] is given in Figure 2 as follows: 
 

1: input: arrays customer[k], facility[n], inpmat[k, n] 
2: output: a matrix trp[k, n] that satisfies all constraints for 
balanced transportation problem 
3: for i = 0; i < n; i = i + 1  
4: supply[i] = facility[i] 
5: for j = 0; j < k; j = j + 1 
6: if i == 0 then 
7: demand[j] = customer[k] 
8: end if 
9: sortedList.add(i, j, inpmat [i, j ]) 
10: end for 
11: end for 
12:sortedList.Sort()//Sort solution values 
13: for m = 0; m < sortedList.Size; m = m + 1 
14: i = sortedList[m].i //assign row number 
15: j = sortedList[m].j //assign column number 
16: val = Min(supply[i], demand[j]) 
17: trp[i, j] = val 
18: supply[i] = supply[i] – val 
19: demand[j] = demand[j] - val 
20: end for 

Figure 2 – Initialization Procedure [23] 
 

We now explain our solution representation with the 
example below. 

Table 1 - Example Problem Parameters 
# Customers 2 
# Facilities 3 
Average Techs 6 
Average Caps 4 
Average Fuels 3 
Demand 1 200 
Demand 2 800 
Current Tech Index 1, 4, 3 
Current Capacity Index 2, 1, 3 
Current Fuel Index 2, 1, 2 

  



Table 2 - Solution Representation 
 Facility 1 Facility 2 Facility 3 
Z 0.3 0.7 0.9 
Weight 0.6 0.4 0.6 
Technology 0.4 0.1 0.9 
Capacity Level 0.3 0.7 0.5 
Fuel 0.1 0.4 0.6 
Customer 1 0.5 0.1 0.9 
Customer 2 0.4 0.7 0.2 

 
Table 3 - Problem Representation 

 Facility 1 Facility 2 Facility 3 
Z 0 1 1 
Capacity 0 400 600 
Technology 3 4 6 
Capacity Level 1 3 2 
Fuel 1 2 3 
Customer 1 0 0 200 
Customer 2 0 400 400 

 
Our solution representation is unique in a way that we used 

real numbers between 0 and 1 in our solution representation 
(genotype). Each number can be decoded into a problem 
representation by using the problem parameters (phenotype). 
We used the random key [24] idea to handle specific dynamic 
lower bound situations for technology and capacity levels. It 
transforms the random numbers from [0, 1) space that are 
generated by ES into a discrete solution space. First, we 
calculate the lower and upper bounds of each variable shown in 
Tables 2 and 3 in a certain order (top to bottom) for each 
facility; we set the lower and upper bounds for all Z variables 
to 0 and 1, respectively; we discretize Z values for each facility. 
Second, we calculate the weight to total weight ratio for each 
open facility and distribute the total demand among those 
facilities (see Equations 20 and 21). If there is a rounding error 
in the total capacity of the facilities, we add the error to the last 
open facility. In this way, we make the problem balanced which 
is a characteristic of the optimal solution.  
 
Total weight = ∑ 𝑧𝑧𝑖𝑖 · 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖2𝑖𝑖 ∈𝐹𝐹  (20) 
Capacity i = 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅(𝑧𝑧𝑖𝑖 · 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖2 · 𝑇𝑇𝑠𝑠𝑠𝑠𝑇𝑇𝑠𝑠 𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇𝑠𝑠𝑅𝑅)(21) 
 

Third, we calculate the technology values using the current 
technology index for each facility as a lower bound and 
available technologies as an upper bound. Fourth, if the 
technology value is same as the current technology index, then 
we use the current capacity index as a lower bound and the 
available capacity levels as an upper bound; if the technology 
value is higher than the current technology index, then we use 
1 as a lower bound and the available capacity levels as an upper 
bound. Fifth, we calculate fuel values using 1 as a lower bound 
and number of available fuels as an upper bound. These first 
five rows are problem independent and the remaining rows are 
based on the number of customers. Next, we solve the 
transportation problem using either stepping stone method or 
procedure initialization. In the first case, we disregard the 
transportation problem part of the solution representation, find 

the optimal assignments from open facilities to customers, and 
use them in problem representation. In the second case, we sort 
the numbers in the solution representation matrix regarding the 
transportation problem in ascending order, start with the cell 
that represents the smallest number and assign the minimum of 
the supply and demand values (see Figure 2). There are several 
sequences that will lead to the optimal solution for the 
transportation problem. Details of the algorithm are given in 
[23]. In our solution representation, we calculate ui values based 
on the technology, capacity, and fuel levels. Therefore, they are 
not independent variables in our metaheuristic methods, but 
they are used in objective function calculations. If a facility has 
a technology, capacity, and fuel level same as current level, ui 
becomes 0, otherwise it becomes 1. Since capacities of the open 
facilities are calculated based on the weights, there might be 
some facilities over or under capacitated for their technology 
and capacity levels. We calculate total under/over capacities for 
a given solution and use it as a violation in NFT. As the number 
of iterations increases, penalty of violating the capacity 
constraints increases. In this way, we do not omit the solutions 
which are not feasible at the beginning of the search since the 
optimal solution may lie at these boundaries. 

IV. COMPUTATIONAL EXPERIMENTS 
To approximate the set of non-dominated solutions, the 

formulation presented in Section 2 was solved as a single 
objective heuristic optimization by linearly combining the two 
objectives into a single one and adding a penalty function NFT 
to handle violated constraints.  

Minimize λ·TC+(1 – λ)·TE + NFT (22) 

The methods were implemented in C#.NET 4.5 and the 
model was solved on a laptop computer running the 64-bit 
version of Windows 10 with an Intel Core i7 8-core processor 
running at 2.5 GHz with 16 GB of RAM. We used the problem 
instance described in [16]. The test instance built includes 30 
customers, 10 facilities, 6 available technologies with 3 capacity 
levels per technology, and considers 4 types of fuels. The value 
of λ was varied from 0 to 1 in increments of 0.01, for a total of 
101 values. For each λ value, we did 5 independent replications 
and picked the best solution among 5 replications. Both heuristic 
methods were able to find near optimal feasible solutions for 
every value of λ. We found 101 near optimal solutions in 25 
minutes and 0.52 minutes on overall average by using the 
stepping stone method and the initialization procedure, 
respectively. Thirteen solutions are non-dominated for the 
stepping stone method and eleven solutions are non-dominated 
for the initialization procedure as depicted in Figure 1. As 
expected, we can observe that there is a clear trade-off between 
the environmental and financial goals. Also the stepping stone 
method outperforms the initialization procedure for every level 
of λ with an increased computational time requirement and they 
were very close to optimal solution for most values of λ. 



 
Figure 2 - Set of Non-dominated Solutions 

V. CONCLUSIONS 
In this paper we addressed the problem of improving the 

current environmental performance of an operating supply chain 
at the lowest possible cost using heuristic optimization methods. 
A corrected version of the mixed integer linear programming 
formulation proposed by [16] was presented. We showed how 
to model and solve the problem using evolutionary strategies 
with a (µ+λ) strategy and a 1/5 success rule, near feasibility 
threshold, stepping stone, and procedure initialization. A test 
instance described in [16] was used and the proposed approach 
was shown to be effective in finding a set of non-dominated 
solutions within a short amount of computational time. 

Both approaches based on the ES algorithm are very slow 
when compared to the MILP because the MILP solves the 
problem in a few number of iterations, whereas the ES methods 
deal with establishing a set of potential solutions to the problem 
at each generation. However, it provides promising solutions for 
both larger and nonlinear variants of the environmental 
optimization problems. 
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