
Solving Large Batches of Traveling Salesman Problems with Parallel and
Distributed Computing

S. G. Ozdena, A. E. Smitha,∗, K.R. Gueb

aDepartment of Industrial & Systems Engineering, Auburn University, Auburn, AL 36849, USA
bDepartment of Industrial Engineering, University of Louisville, Louisville, KY 40292, USA

Abstract

In this paper, we describe and compare serial, parallel, and distributed solver implementations for large

batches of Traveling Salesman Problems using the Lin-Kernighan Heuristic (LKH) and the Concorde

exact TSP Solver. Parallel and distributed solver implementations are useful when many medium to large

size TSP instances must be solved simultaneously. These implementations are found to be straightforward

and highly efficient compared to serial implementations. Our results indicate that parallel computing

using hyper-threading for solving 150- and 200-city TSPs can increase the overall utilization of computer

resources up to 25 percent compared to single thread computing. The resulting speed-up/physical core

ratios are as much as ten times better than a parallel and concurrent version of the LKH heuristic using

SPC3 in the literature. For variable TSP sizes, a longest processing time first heuristic performs better

than an equal distribution rule. We illustrate our approach with an application in the design of order

picking warehouses.

Keywords: TSP, Parallel Computing, Routing, Distributed Computing, Facilities Design

1. Introduction

With the arrival of multi-core processors in 2005, computers gained more power by providing more

clock cycles per CPU. However, most software implementations are still inefficient single processor pro-

grams [1]. Writing an efficient and scalable parallel program is a complex task. However, C# parallel

libraries provide the power of parallel computing with simple changes in the implementation if a certain

condition is met: the steps inside the operation must be independent (i.e., they must not write to memory

locations or files that are accessed by other steps). Solving large batches of Traveling Salesman Problems

is an example of such independent operations. Each TSP instance can be solved by calling a TSP Solver

in parallel. Applications of large batches of TSPs include design of order picking warehouses [2], large

∗Corresponding author
Email addresses: gokhan@auburn.edu (S. G. Ozden), smithae@auburn.edu (A. E. Smith), kevin.gue@louisville.edu

(K.R. Gue)

Preprint submitted to Elsevier April 2, 2017

scale distribution network simulation [3, 4], case-based reasoning for repetitive TSPs [5], and delivery

route optimization [6]. In these applications the TSP solving consumes most of the computational effort.

We use both the Lin-Kernighan Heuristic (LKH) and the Concorde exact TSP Solver (Concorde).

The methods we describe are applicable to optimization problems that must be solved repetitively in an

overall algorithm. In this paper, we present two example problems that solve large batches of TSPs and

give implementation details in the context of warehouse design for order picking operations. The main

result of this paper is to show that doing the parallelism at the TSP level instead of the TSP Solvers’

implementation level [1] provides better CPU utilization. A parallel implementation generally achieves

better CPU execution times than serial implementations, but an improved CPU utilization is not easily

achievable. To the best of our knowledge, this is the first work that presents CPU utilizations for solving

large batches of TSPs in serial, parallel, and distributed computing environments.

This work is organized as follows. In Section 2 we give a technical description of the Traveling

Salesman Problem (TSP) with solution techniques and its variant of large batches of Traveling Salesman

Problems. In Section 3, we describe our implementation of serial, parallel, and distributed large batches

of TSPs solvers. In Section 4 we present the computational results, and in Section 5 we offer conclusions.

2. Traveling Salesman Problem and Solution Techniques

The Traveling Salesman Problem (TSP) is an NP-hard [7] combinatorial optimization problem where

a salesman has to visit n cities only once and then return to the starting city with minimum travel cost

(or travel distance). It is one the most famous and widely studied combinatorial problems [8]. Solving

the problem with a brute force approach requires a factorial execution time O(n!) by permuting all the

possible tours through n cities and therefore checking (n−1)! possible tours. Given a starting city, there

can be n−1 choices for the second city, n−2 choices for the third city, and so on. In the symmetric TSP,

the number of possible solutions is halved because every sequence has the same distance when traveled

in reverse order. If n is only 20, there are approximately 1018 possible tours. In the asymmetric TSP,

costs on an arc might depend on the direction of travel (streets might be one way or traffic might be

considered).

2

Using an integer linear programming formulation [1], the TSP can be defined as:

min
∑
i∈V

∑
j∈V

cijxij (1)

∑
j∈V

xij = 1, i ∈ V (2)

∑
i∈V

xij = 1, j ∈ V (3)

∑
i∈S

∑
j∈S

xij ≤ |S| − 1,∀S ⊂ V, S 6= ∅ (4)

xij ∈ {0, 1},∀i, j ∈ V (5)

where xij = 1 if the path goes from city i to city j and 0 otherwise. V is a set of cities, S is a subset of

V , and cij is the cost of moving from city i to city j. The first set of equalities enforces that each city

be arrived at from exactly one city, and the second set enforces that from each city there is a departure

to exactly one other city. The third set of constraints ensures that a single tour is created which spans

all cities.

TSP is a widely studied problem where solution methods can be classified as Exact Algorithms, TSP

Heuristics, or Meta-Heuristics. Exact algorithms are guaranteed to find an optimal solution in a bounded

number of steps. Enumeration is only good for solving small instances up to 10 cities. The dynamic

programming algorithm of Held and Karp [9] and the branch-and-bound algorithm are some well known

algorithms in this class. They are good for solving instances up to 60 cities. Concorde is a code for

solving symmetric TSPs and related network optimization problems exactly using branch-and-bound

and problem specific branch-and-cut techniques [10, 11]. This algorithm is the current exact method of

choice for solving large instances. Concorde was able to solve a 85,900-city problem in TSPLIB [12].

Heuristics are used when the problem is large and a solution is needed in a limited amount of time. We

can categorize these heuristics into two groups: “constructive heuristics” and “improvement heuristics.”

Constructive heuristics start with an empty tour and repeatedly extend the tour until it is complete.

The most popular constructive heuristic is the nearest neighbor algorithm, where the salesman chooses

the nearest unvisited city as the next move and finally returns to the first city. Improvement heuristics

start with a complete tour and then try to improve it with local moves. The most popular and easily

implementable heuristic is the pairwise exchange, or 2-opt, which iteratively removes two edges and

replaces them with two different edges to obtain a shorter tour. The algorithm continues until no

more improvement is possible. k-opt is a generalization which forms the basis of one of the most effective

heuristics for solving the symmetric TSP, the Lin-Kernighan Heuristic [13]. k-opt is based on the concept

3

of k-optimality: “A tour is said to be k-optimal if it is impossible to obtain a shorter tour by replacing

any k of its links by any other set of k links” [14]. For a more detailed review of these algorithms refer

to [14].

Meta-heuristic algorithms are designed for solving a problem more quickly than exact algorithms but

are not specifically designed for any particular problem class. Most of these meta-heuristics implement

some form of stochastic optimization. The solution is dependent on the set of random numbers generated.

Meta-heuristics’ ability to find their way out of local optima contributes to their current popularity.

Specific meta-heuristics used for solving the TSP include simulated annealing [15], genetic algorithms

[16], tabu search [17], ant colony optimization [18], iterated local search [19], particle swarm optimization

[20], nested partitions [21], and neural networks [22]. There are many variants and hybrids of these meta-

heuristics designed to solve the TSP [23].

2.1. Parallel/Distributed Implementations

The algorithms mentioned in this section solve a single TSP using parallel/distributed techniques.

A parallel and concurrent version of the Lin-Kernighan-Helsgaun heuristic using SPC3 programming

is implemented in [1]. SPC3 is a newly developed parallel programming model (Serial, Parallel, and

Concurrent Core to Core Programming Model) developed for multi-core processors. Developers can

easily write new parallel code or convert existing code written for a single processor. All of their speed-

ups were less than 2 times compared to single thread runs, even when using a 24-core machine. The

computational time of each individual task parallelized was insignificantly small, therefore the overhead

of the parallelization prevented achievement close to the theoretical boundaries of the speed-up [24].

In [25], a sequential algorithm is developed for solving TSP and converted into a parallel algorithm

by integrating it with the Message Passing Interface (MPI) libraries. The authors use a dynamic two

dimensional array and store the costs of all possible paths. They decompose the task of filling this 2D

array into subroutines to parallelize the algorithm using MPI. The Message Passing Interface provides

the subroutines needed to decompose the tasks involved in the TSP solving process into subproblems

that can be distributed among the available nodes for processing. Experimental results conducted on a

Beowulf cluster show that their speed-ups were less than 3.5 times on a 32 processor cluster. Another

technique to implement parallel heuristics for the geometric TSP (symmetric and Euclidean distances

between cities), called the divide and conquer strategy, is proposed in [26]. This reference subdivides the

set of cities into smaller sets and computes an optimal subtour for each subset. Each subtour is then

combined to obtain the tour for the entire problem. The author was able to achieve between 3.0 and 7.2

times speed-up on a 16 core machine.

4

2.2. Large Batches of Traveling Salesman Problems

Solving a single TSP gives the best path for a certain instance. However, this assumes that the

location of the cities (visited points) are fixed. In situations where the problem consists of finding the

optimal locations of these cities (visited points), numerous TSPs must be solved to assess a certain design,

(e.g, a warehouse layout or a distribution network). Large batches of TSPs are different from the multiple

traveling salesman problem (mTSP) which consists of determining a set of routes for m salesmen who all

start from and return back to a depot. In large batches of TSPs, to find the expected distance traveled

(or another relevant statistic of the distribution of tour lengths), we need to evaluate a large set of tours.

Solving large batches of TSPs provides a more accurate estimate and a wider information set than solving

only a single TSP. This type of problem can be found in design of order picking warehouses, large scale

distribution network simulation [3, 4], case-based reasoning for repetitive TSPs [5], and delivery route

optimization [6]. Since our focus is solving large batches of TSPs, parallelizing each task at the TSP

level will lead to better speed-ups than solving a single TSP using parallel techniques. To best of our

knowledge, ours is the first comprehensive comparison of serial, parallel, and distributed large batches of

TSPs solvers.

3. Methodology

The methodology for solving large batches of TSPs includes three main steps. In Step 1, problem

specific conditions are set (e.g., a warehouse layout structure or a distribution network structure). This

typically involves creating locations and calculating distances between locations. We need to assess

the total or average cost of TSPs for the given configuration of Step 1. Therefore, multiple TSPs are

created and evaluated with a TSP solver in Step 2. In Step 3, the total or average cost of the TSPs

is calculated. In the next subsection, we provide an example from the literature in the context of a

large-scale distribution network simulation [3]. In the later subsections, we discuss this problem in the

context of design of order picking warehouses and give implementation details.

3.1. Large-scale Distribution Network Simulation

A large scale distribution network may look like in Figure 1. This network includes multiple man-

ufacturing enterprises. Parts are delivered from suppliers directly to factories or through warehouses.

Direct delivery from the supplier to a warehouse or a factory would be inefficient. Therefore, a truck

visits several suppliers and collects parts.

According to [3], the total cost of distribution must be calculated. Therefore, several hundreds of

distributing routes are created for differing conditions to find the best large-scale distribution network.

5

Supplier Warehouse Factory

Figure 1: Large-scale Distribution Network [3]

The authors in [3] note that efficiency (i.e., solving overall problem quickly) and precision (i.e., solving

close to optimal) are important. The methodology herein is applicable to this class of distribution network

problem.

3.2. Design of Order Picking Warehouses

The warehouse design software that motivated this study creates a warehouse layout for given pa-

rameters, calculates shortest path distances between storage locations and between storage locations to a

pick and deposit location (i.e., a location where a TSP tour starts and ends), creates a TSP file based on

the product orders (i.e., each order is a pick tour or a TSP), sends them to the Concorde or LKH solver

and reads the resulting TSP distance from these solvers [2]. To find the best designs, we must consider

numerous product orders that represent the order picking activity of the warehouse. We identify the

design that gives the minimum average travel cost.

Figure 2 shows the seven stages in the warehouse layout creation and fitness assessment. Boxes with

dashed lines represent the most time consuming parts of the overall process. In this paper, we focus on

Stage 6: “Create a TSP File for Each Order and Solve TSPs.” We will describe how we implemented

parallel and distributed computing techniques for this stage. Our approach is not specific to warehouse

design and can be used for any application that requires solving large batches of TSPs.

We use the C# programming language and the .NET environment. We use C# parallel class meth-

ods [27] for parallel computing. For distributed computing, we implement a modified version of the

asynchronous client-server example from the Microsoft Developer Network (MSDN) [28].

3.3. Serial Execution of Concorde/LKH

In this case, we send a set of orders (pick lists) to a wrapper function one by one in serial. For

each order, we find the products and their locations in the warehouse and generate a distance matrix

that contains only the items in this particular order. Because the shortest path distances are already

6

Start

1. Read Design Parameters

2. Read SKU Data

3. Read Order Data

4. Create Warehouse Layout

5. Calculate Shortest Path Distances

6. Create a TSP File for
Each Order and Solve TSPs

7. Calculate Average
Travel Cost per Tour

End

Figure 2: Stages in warehouse design creation and fitness assessment

calculated in the previous stage, we only generate a sub-matrix of the main distance matrix which

contains the all-pairs shortest path distances between every storage location and the pick and deposit

location in the warehouse. Based on this distance matrix, we generate a file in the TSP file format [12].

Concorde or LKH is called to solve the corresponding TSP file, and to read and keep the distance after

the execution. Finally, we delete the generated TSP file and any generated files from Concorde/LKH

and continue to the next order. Stage 6 ends when all orders are evaluated.

3.4. Parallel Execution of Multiple Concorde/LKH Solvers

Since the operation inside the loop of Figure 3 is independent of any other, we can use “Parallel For

Loop”[24] and send a set of orders to the wrapper function in parallel. The rest of the operations are the

same as a serial execution, but they are performed in parallel until all orders are completed. In Figure 4,

blocks with dashed lines represent the operations that are performed concurrently.

3.5. Parallel and Distributed Execution of Multiple Concorde/LKH Solvers

In this case, we have a master-slave architecture to perform distributed computing. We use a static

load balancing methodology to distribute TSPs evenly among machines because dynamic load balancing

methodologies increase the network overhead by sending and receiving the status of each processor of

each slave machine. Also in our first set of experiments, we analyze TSPs of the same size in one batch,

which makes dynamic load balancing less effective. We first create TSP files of each order in the master

machine in parallel and distribute the TSP files to each slave machine using the TCP/IP protocol with

given workload percentage. If the master machine requires provably optimal solutions, then it sends the

7

Stage 6 Start

Read Order

Find Locations of Items in the Order

Generate Distance Matrix

Create TSP File Using Distance Matrix

Call Concorde/LKH

Delete Generated Files

Return TSP Cost

More
orders?

Stage 6 End

Next
Iteration

yes

no

Figure 3: Serial Execution of Concorde/LKH Solvers

Stage 6 Start

Read Order

Find Locations of Items in the Order

Generate Distance Matrix

Create TSP File Using Distance Matrix

Call Concorde/LKH

Delete Generated Files

Return TSP Cost

More
orders?

Stage 6 End

Next
Iteration

yes

no

Figure 4: Parallel Execution of Concorde/LKH Solvers

8

Stage
6 Start

Read Order

Find Locations
of Items in
the Order

Generate Dis-
tance Matrix

Create TSP
File Using

Distance Matrix

More
orders?

Distribute
TSP Files

Machine 1 Machine n

Call Con-
corde/LKH

Call Con-
corde/LKH

Delete Gen-
erated Files

Delete Gen-
erated Files

Return TSP Cost Return TSP Cost

More
TSPs?

More
TSPs?

Stage
6 End

Next
Iteration

Next
Iteration

Next
Iteration

Send TSP
Costs to
Master

Send TSP
Costs to
Master

yes

yes yes

no

no no

Figure 5: Parallel and Distributed Execution of Multiple Concorde/LKH Solvers

TSP files using port 8888 otherwise it uses port 8889. Two processes are running on the slave machine.

The first listens to port 8888 and solves the TSP files that are sent by the master machine with Concorde

in parallel. The second listens to port 8889 and solves the TSP files that are sent by the master machine

with the LKH in parallel. A slave machine receives the TSP files over the TCP/IP protocol and keeps the

files until Stage 6 ends. The slave machine waits for a “DONE” signal to start TSP runs in parallel, then

returns the TSP distance over TCP/IP with the “DONE” signal at the end, closes the communication

between the master and slave machines. After the master machine receives all TSP distances, Stage 6

ends. Figure 5 shows the parallel and distributed execution of multiple Concorde/LKH solvers. Blocks

with dashed lines represent the operations that are performed concurrently.

9

Table 1: Problem parameters used for the computational experiments

Number of Cities 5, 25, 50, 100, 150, 200
Number of TSPs Solved 10, 100, 1000, 10000
Execution Mode Serial, Parallel, Distributed with two or three Machines

4. Computational Results

4.1. Fixed Size TSP Instances

We have selected fixed sized TSP instances generated using our warehouse optimization software.

For the execution of the algorithms, a Lenovo workstation with a six core hyperthreaded Intel Xeon

E5-1650 processor is used. Each workstation has 64GB of RAM and 256GB of Solid State Drive. The

operating system is 64 bit Windows 7, Enterprise Edition. The total number of parallel threads that

can be executed is 2 × 6 = 12. Table 1 gives a summary of the parameter settings used in the set of

experiments. To address the variability in execution times as a result of the background processes of the

operating system, we perform five runs for each experiment and calculate average execution time. We use

default settings for Concorde. For LKH, we set “RUNS” (the total number of runs) to 1, “TIME LIMIT”

to 1 second and “MOVE TYPE” to 4 which means that a sequential 4-opt move is to be used.

Table 2 shows the average execution time speed up over serial execution. Speed up is the ratio of the

execution time of the serial algorithm to the execution time of the parallel/distributed algorithm. Both

LKH and Concorde better utilize computing resources when the TSP size increases (see Figures 6 and 7).

LKH uses parallel executions better than Concorde, because it is set to run with a maximum execution

time for each TSP instance. As a result, all concurrent operations have similar execution times, which

enables a better workload balance among CPU cores. When solving with Concorde, some TSP instances

are harder, therefore the time to find an optimal solution varies, leading to a poor workload balance

among cores (and CPUs for distributed computing).

However, Concorde uses distributed-2 and distributed-3 executions more efficiently because the over-

head of sending TSP files to slaves has less effect in execution of Concorde than LKH (see Figures 8 and

9). In Figure 6, the speed-up decreases when solving for instances with fewer than 50 cities and more

than 100 TSPs. This is because the network overhead of sending many TSP files becomes inefficient for

few cities with Concorde. The same is true for LKH, but in this case the speed-up decreases even for a

50 city TSP. There is a point between the number of TSPs (many) and the city size (low) for both TSP

Solvers where distributed computing becomes inefficient.

Table 3 shows the average speed-up/physical core ratio (SPR) of the additional CPU cores for parallel,

distributed-2, and distributed-3 executions. It is important to note that serial execution uses one of the

six physical cores instead of one of the twelve logical cores. A hyperthreaded processor can achieve 30

10

Table 2: Average Speed-ups (Multiplier)

Parallel Distributed 2 Distributed 3

Cities Batch Concorde LKH Concorde LKH Concorde LKH

5 10 3.68 3.13 5.87 4.30 7.17 5.80
100 4.63 3.77 7.82 5.16 10.31 6.96

1000 3.42 4.25 6.28 6.30 8.01 7.89
10000 3.34 4.03 5.31 4.68 6.39 5.48

25 10 4.69 3.95 6.28 4.40 6.31 4.87
100 4.54 4.44 9.87 6.09 12.69 7.40

1000 3.73 5.63 10.35 7.56 13.58 9.29
10000 3.73 5.16 9.22 5.87 12.76 7.70

50 10 3.79 4.01 4.78 4.64 4.12 5.35
100 3.73 6.14 7.09 8.10 6.39 9.73

1000 4.65 6.75 10.03 9.19 13.70 12.25
10000 4.58 6.80 10.52 8.85 15.02 11.57

100 10 4.62 4.13 4.70 4.47 5.25 4.66
100 5.44 6.71 8.06 10.48 10.15 12.95

1000 6.62 6.98 12.03 11.34 16.87 15.90
10000 6.80 7.22 13.21 12.08 19.35 16.74

150 10 1.46 4.16 1.25 3.98 1.36 4.34
100 5.51 6.58 5.87 9.46 5.60 11.81

1000 6.69 7.07 11.06 10.80 14.51 14.33
10000 7.20 7.37 12.53 11.50 17.76 14.79

200 10 2.47 3.64 1.45 3.47 2.83 3.59
100 5.25 6.80 5.20 7.72 5.95 9.37

1000 6.49 7.13 10.60 9.28 12.51 11.86
10000 6.07 7.49 12.30 10.13 15.01 12.92

11

10 100 1000 10000

2

4

6

8

10

12

14

Number of TSPs

S
p

ee
d

U
p

5 Cities
25 Cities
50 Cities
100 Cities
150 Cities
200 Cities

Figure 6: Number of TSPs vs. Number of Cities for Speed Up (Concorde)

percent increased performance compared to a non-hyperthreaded processor [29]. Therefore we should

be able to see SPR values as high as 130%. Values less then 100% mean that executions with parallel

or distributed techniques do not effectively use the physical cores. Values higher than 100% mean that

executions with parallel or distributed techniques use computing resources more effectively than serial

execution because of hyper-threading. This means that parallelization done at a higher level (solving

each entire TSP in parallel) improves CPU utilization over parallelization done at Stage 6 (finding an

optimal tour by performing a number of trials where each trial attempts to improve the initial tour) for

LKH using SPC3 [1]. Moreover, a parallel implementation can solve more than six times faster than a

serial implementation on the same 6-core machine. We used the following formula to calculate the SPR

values in Table 3:

spr =
su

npc
(6)

where spr is the speed-up/physical core ratio, su is the average execution time speed-up over serial

execution, and npc is the number of physical cores available per execution. npc values for parallel,

distributed-2, and distributed-3 executions are 6, 12, and 18, respectively. Table 4 shows a 4-way ANOVA

using Minitab 17.0 statistical software. The differences between the group means of the main effects (TSP

size, number of TSPs (batch), algorithm type (parallel, distributed-2, and distributed-3), solver type

(LKH or Concorde)) and their interactions (two, three, and four level interactions) are all statistically

significant. The model can explain 94.72% of the variability of the response data around its mean.

4.2. Variable Size TSP Instances

We should emphasize that our methodology is not bounded to fixed size TSP instances. In this set

of experiments, we demonstrate our methodology’s ability to solve variable size TSP instances. These

instances are from real order picking data where TSP sizes are different. This real order data set has

12

Table 3: Average Speed-up/Physical Core Ratio (Percent) and 95% Confidence Intervals on SPR

Parallel Distributed 2 Distributed 3

Cities Batch Concorde LKH Concorde LKH Concorde LKH

5 10 61(52,70) 52(41,63) 49(41,56) 36(25,47) 40(27,53) 32(22,43)
100 77(75,79) 63(59,66) 65(62,68) 43(42,44) 57(55,60) 39(37,41)

1000 57(57,57) 71(70,72) 52(51,54) 52(52,53) 45(43,46) 44(43,44)
10000 56(55,56) 67(67,68) 44(44,45) 39(38,40) 36(35,36) 30(30,31)

25 10 78(73,83) 66(58,74) 52(46,58) 37(36,38) 35(30,40) 27(21,33)
100 76(72,79) 74(71,77) 82(80,85) 51(48,54) 70(67,74) 41(40,42)

1000 62(60,64) 94(89,99) 86(85,87) 63(61,65) 75(72,79) 52(50,53)
10000 62(62,63) 86(85,87) 77(76,77) 49(48,50) 71(70,72) 43(41,44)

50 10 63(52,74) 67(64,70) 40(36,44) 39(36,41) 23(21,25) 30(28,32)
100 62(54,71) 102(98,106) 59(55,64) 67(66,69) 35(30,41) 54(51,57)

1000 77(72,83) 113(111,114) 84(79,88) 77(76,77) 76(67,86) 68(67,69)
10000 76(76,77) 113(112,115) 88(85,90) 74(73,74) 83(82,85) 64(63,66)

100 10 77(46,108) 69(64,73) 39(33,45) 37(36,39) 29(23,35) 26(26,26)
100 91(78,103) 112(107,117) 67(55,80) 87(82,92) 56(48,65) 72(66,78)

1000 110(108,113) 116(114,118) 100(89,111) 95(93,96) 94(90,98) 88(86,90)
10000 113(113,114) 120(119,122) 110(109,112) 101(98,103) 107(104,110) 93(92,94)

150 10 24(22,27) 69(61,78) 10(5,15) 33(30,37) 8(6,9) 24(24,25)
100 92(79,104) 110(102,117) 49(39,59) 79(75,83) 31(21,41) 66(61,70)

1000 112(110,113) 118(116,120) 92(88,97) 90(88,92) 81(74,87) 80(75,84)
10000 120(118,122) 123(122,124) 104(99,110) 96(95,97) 99(92,105) 82(81,84)

200 10 41(25,57) 61(58,63) 12(6,18) 29(28,30) 16(8,23) 20(19,21)
100 88(76,100) 113(111,116) 43(22,65) 64(59,69) 33(22,44) 52(46,58)

1000 108(103,114) 119(116,121) 88(82,94) 77(75,80) 69(46,93) 66(63,68)
10000 101(90,113) 125(124,125) 103(96,109) 84(84,85) 83(67,100) 72(71,73)

10 100 1000 10000

4

6

8

10

12

14

Number of TSPs

S
p

ee
d

U
p

5 Cities
25 Cities
50 Cities
100 Cities
150 Cities
200 Cities

Figure 7: Number of TSPs vs. Number of Cities for Speed Up (LKH)

13

Table 4: ANOVA: SPR versus Size, Batch, Algorithm, Solver

Source DF Adj SS Adj MS F-Value P-Value

Size 5 7.6132 1.52264 275.88 0
Batch 3 21.4787 7.15956 1297.22 0
Algorithm 2 12.0637 6.03184 1092.89 0
Solver 1 0.078 0.078 14.13 0
Size*Batch 15 7.7685 0.5179 93.84 0
Size*Algorithm 10 0.7865 0.07865 14.25 0
Size*Solver 5 1.3363 0.26725 48.42 0
Batch*Algorithm 6 0.4232 0.07054 12.78 0
Batch*Solver 3 0.3713 0.12377 22.42 0
Algorithm*Solver 2 1.2914 0.64569 116.99 0
Size*Batch*Algorithm 30 0.7685 0.02562 4.64 0
Size*Batch*Solver 15 1.524 0.1016 18.41 0
Size*Algorithm*Solver 10 0.4784 0.04784 8.67 0
Batch*Algorithm*Solver 6 0.5061 0.08435 15.28 0
Size*Batch*Algorithm*Solver 30 0.4957 0.01652 2.99 0

Error 576 3.179 0.00552

Total 719 60.1625

S R-sq R-sq(adj) R-sq(pred)

0.0742909 94.72% 93.40% 91.74%

P D-2 D-3

40

60

80

100

120

Execution Mode

S
P

R
(p

er
ce

n
t)

5 Cities
25 Cities
50 Cities
100 Cities
150 Cities
200 Cities

Figure 8: Execution Mode vs. Number of Cities for SPR (Concorde)

P D-2 D-3

40

60

80

100

120

Execution Mode

S
P

R
(p

er
ce

n
t)

5 Cities
25 Cities
50 Cities
100 Cities
150 Cities
200 Cities

Figure 9: Execution Mode vs. Number of Cities for SPR (LKH)

14

0 10 20 30 40 50 60 70 80 90
0

0.5

1

1.5

2

2.5

3

10 30 50 70

TSP Size

lo
g

(F
re

q
u
en

cy
)

Figure 10: TSP Size Frequency for 10,967 TSPs (Three outliers, 162, 163, and 164 are omitted from the graph)

10,967 TSPs, the average number of cities visited per TSP is 10.12, and the largest TSP has 164 cities.

The frequency of TSP sizes is shown in Figure 10. Because of variable TSP sizes, equal distribution

of TSPs among identical machines may create overloaded machines and increase the total makespan.

Therefore, we compare an equal distribution rule (EDR) against a well known task assignment rule, the

longest processing time (LPT) rule [30]. In LPT, jobs (TSPs) are sorted by problem size (as a proxy for

processing time, which we do not know yet) and assigned to the machine with the earliest end time so far.

In worst case scenario, the algorithm achieves a makespan of 4/3− 1/3(m)OPT where m is the number

of machines (i.e., LPT produces a makespan that is at most 33% worse than optimal assignment). We

perform five replications for each experiment. Two important things affect the results of these runs: the

order of the TSPs in EDR and the estimation of processing time by size of TSP. In some cases, a 40-city

TSP can be much harder than a 41-city TSP. Also, a two machine EDR may perform close to optimal,

whereas a three machine EDR can be quite suboptimal. The 3-way ANOVA in Table 6 shows that all

main factors and the Machines*Solver interaction are significant. Other two-way interactions and the

three way interaction are insignificant. The model explains 99.65% of the variability of the response data

around its mean. Figure 11 shows the statistically significant effects — all three main effects and the

two way interaction for Machines*Solver. The difference between the means of the TSP solvers is more

pronounced than the other two main effects; LKH is nearly three times faster than Concorde. Obviously,

increasing from two to three machines reduces the time needed. The 1.8 second difference between the

means of EDR and LPT is statistically significant, showing the benefit of using LPT for unequal sizes

of TSPs. The two way effect lines are not parallel, showing that Concorde benefits relatively more from

using three machines than does LKH.

In order to show LPTs effectiveness, we create a more controlled experiment with generated TSPs.

15

Table 5: ANOVA: Time versus Machines, Algorithm, Solver (Real Data)

Source DF Adj SS Adj MS F-Value P-Value

Machines 1 912.11 912.11 996.58 0.000
Solver 1 7219.01 7219.01 7887.54 0.000
Scheduling 1 33.31 33.31 36.40 0.000
Machines*Solver 1 270.03 270.03 295.03 0.000
Machines*Scheduling 1 0.82 0.82 0.90 0.350
Solver*Scheduling 1 2.35 2.35 2.57 0.119
Machines*Solver*Scheduling 1 0.07 0.07 0.08 0.779

Error 32 29.29 0.92

Total 39 8467.01

S R-sq R-sq(adj) R-sq(pred)

0.956683 99.65% 99.58% 99.46%

2 3 LKH Conc. EDR LPT
10

15

20

25

30

35

40

45
Machines Solver Scheduling

M
ea

n
T

im
e

(C
P

U
se

co
n
d
s)

(a) Main Effects

LKH Conc.
10

15

20

25

30

35

40

45

50

M
ea

n
T

im
e

(C
P

U
se

co
n
d
s)

Two Machines
Three Machines

(b) Machines*Solver

Figure 11: Main Effects and Machines*Solver Interaction Plots for Time (Real Data)

16

Table 6: ANOVA: Time versus Machines, Algorithm, Solver (Generated Data)

Source DF Adj SS Adj MS F-Value P-Value

Machines 1 2555.9 2555.9 404.55 0.000
Algorithm 1 20244.7 20244.7 3204.36 0.000
Scheduling 1 403.5 403.5 63.87 0.000
Machines*Solver 1 718.9 718.9 113.79 0.000
Machines*Scheduling 1 8.2 8.2 1.29 0.264
Solver*Scheduling 1 173.1 173.1 27.40 0.000
Machines*Solver*Scheduling 1 36.2 36.2 5.73 0.023

Error 32 29.29 0.92

Total 39 8467.01

S R-sq R-sq(adj) R-sq(pred)

0.956683 99.65% 99.58% 99.46%

2 3 LKH Conc. EDR LPT
20

30

40

50

60

70

80
Machines Solver Scheduling

M
ea

n
T

im
e

(C
P

U
se

co
n

d
s)

(a) Main Effects

LKH Conc.
20

30

40

50

60

70

80

M
ea

n
T

im
e

(C
P

U
se

co
n

d
s)

Two Machines
Three Machines

(b) Machines*Solver

EDR LPT.
20

30

40

50

60

70

80

M
ea

n
T

im
e

(C
P

U
se

co
n

d
s)

LKH
Concorde

(c) Solver*Scheduling

Figure 12: Main Effects and Machines*Solver Interaction Plots for Time (Generated Data)

In this case, we create TSPs in the following order repeatedly for 3,840 times: size 51, size 11, size 6.

In this way, we know that the EDR method will assign all 51-city TSPs to the first machine, all 11-city

TSPs to the second machine, and all 6-city TSPs to the third machine. In this experiment, there are

11,520 TSPs and average TSP size is 22.67. All main effects, and two and three way interactions are

statistically significant except for the Machines*Scheduling interaction. Figure 12 shows the three main

effects and the significant two way interactions, Machines*Algorithm and Algorithm*Scheduling. The

results are congruent with those from the real data. LKH is 2.84 times faster than Concorde on average.

LPT finishes on the average 6.35 seconds earlier than EDR, again showing its benefit. The choice of

the scheduling approach is more important when the TSP solver is Concorde because of the longer and

non-uniform processing times for this exact method.

5. Conclusions

We presented how parallel computing techniques can significantly decrease the overall computational

time and increase the CPU utilization for solving large batches of TSPs using simple and effective parallel

class methods in C#. Moreover, we showed our results for distributed and parallel computing methods

17

with two and three slave machines. Using distributed computing techniques requires some background

in C# socket programming but simple examples can be found on the web [28].

Solving large batches of TSPs is the most computationally intensive step in many applications involv-

ing routing. Our results show that using C# parallel class methods is a simple, effective and scalable way

to parallelize solving large batches of TSPs. The programmer can write wrapper functions for Concorde

and LKH, and implement “parallel for loops” to leverage the multi-core processors. However, distributed

computing techniques only show their real benefits when the TSP instances have more than 50 cities so

that the network and file read/write overhead is relatively negligible. Our results also show that for both

real data and generated data, a scheduling algorithm like LPT performs better than a näıve method like

EDR even though the method used for estimating processing times of TSPs is not very accurate (TSP

size, in this case).

The Lin-Kernighan Heuristic (LKH) can be selected over the Concorde TSP Solver when optimality is

desired but not required. In our results, LKH is 24.37, 30.59, 20.14, and 21.91 times faster than Concorde

on average in single, parallel, 2-computer distributed, and 3-computer distributed runs for solving 10,000

200-city TSPs, respectively. The average optimality gap is less than 0.34% per run.

Acknowledgement

This research was supported in part by the National Science Foundation under Grant CMMI-1200567.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National Science Foundation. The authors would

like to thank Michael Robbins and Ataman Billor for data collection and testing the code.

References

[1] M. A. Ismail, S. H. Mirza, and T. Altaf, “A parallel and concurrent implementation of Lin-Kernighan heuristic (LKH-

2) for solving traveling salesman problem for multi-core processors using SPC3 programming model,” International

Journal of Advanced Computers Science and Applications, vol. 2, pp. 34–43, 2011.

[2] S. G. Ozden, A. E. Smith, and K. R. Gue, “Non-traditional warehouse design optimization and their effects on order

picking operations.” Working Paper, 2017.

[3] S. Kubota, T. Onoyama, K. Oyanagi, and S. Tsuruta, “Traveling salesman problem solving method fit for interactive

repetitive simulation of large-scale distribution networks,” in Systems, Man, and Cybernetics, 1999. IEEE SMC’99

Conference Proceedings. 1999 IEEE International Conference on, vol. 3, pp. 533–538, IEEE, 1999.

[4] Y. Sakurai, T. Onoyama, S. Kubota, Y. Nakamura, and S. Tsuruta, “A multi-world intelligent genetic algorithm to

interactively optimize large-scale TSP,” in 2006 IEEE International Conference on Information Reuse & Integration,

pp. 248–255, IEEE, 2006.

[5] D. R. Kraay and P. T. Harker, “Case-based reasoning for repetitive combinatorial optimization problems, part II:

numerical results,” Journal of Heuristics, vol. 3, no. 1, pp. 25–42, 1997.

18

[6] Y. Sakurai, K. Takada, N. Tsukamoto, T. Onoyama, R. Knauf, and S. Tsuruta, “A simple optimization method

based on Backtrack and GA for delivery schedule,” in 2011 IEEE Congress of Evolutionary Computation (CEC),

pp. 2790–2797, IEEE, 2011.

[7] M. R. Garey and D. S. Johnson, “Computers and intractability: a guide to NP-completeness.” WH Freeman New

York, 1979.

[8] K. Rocki and R. Suda, “High performance GPU accelerated local optimization in TSP,” in Parallel and Distributed

Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 IEEE 27th International, pp. 1788–1796, IEEE,

2013.

[9] M. Held and R. M. Karp, “A dynamic programming approach to sequencing problems,” Journal of the Society for

Industrial and Applied Mathematics, vol. 10, pp. 196–210, 1962.

[10] D. L. Applegate, R. E. Bixby, V. Chvátal, and W. J. Cook, The Traveling Salesman Problem: A Computational

Study. Princeton University Press, 2007.

[11] W. Cook, In pursuit of the traveling salesman: mathematics at the limits of computation. Princeton University Press,

2014.

[12] “TSPLIB.” http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/, 2013 [accessed 02.20.2016].

[13] S. Lin and B. W. Kernighan, “An effective heuristic algorithm for the traveling-salesman problem,” Operations Re-

search, vol. 21, no. 2, pp. 498–516, 1973.

[14] K. Helsgaun, “An effective implementation of the Lin-Kernighan traveling salesman heuristic,” European Journal of

Operational Research, vol. 126, pp. 106–130, 2000.

[15] S. Kirkpatrick, “Optimization by simulated annealing: Quantitative studies,” Journal of Statistical Physics, vol. 34,

no. 5-6, pp. 975–986, 1984.

[16] J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht, “Genetic algorithms for the traveling salesman problem,”

in Proceedings of the First International Conference on Genetic Algorithms and their Applications, pp. 160–168,

Lawrence Erlbaum, New Jersey (160-168), 1985.

[17] J. Knox, “Tabu search performance on the symmetric traveling salesman problem,” Computers & Operations Research,

vol. 21, no. 8, pp. 867–876, 1994.

[18] M. Dorigo and L. M. Gambardella, “Ant colonies for the travelling salesman problem,” BioSystems, vol. 43, no. 2,

pp. 73–81, 1997.

[19] H. R. Lourenço, O. C. Martin, and T. Stützle, Handbook of Metaheuristics, ch. Iterated Local Search, pp. 320–353.

Boston, MA: Springer US, 2003.

[20] X. Shi, Y. Liang, H. Lee, C. Lu, and Q. Wang, “Particle swarm optimization-based algorithms for TSP and generalized

TSP,” Information Processing Letters, vol. 103, no. 5, pp. 169 – 176, 2007.

[21] L. Shi, S. Ólafsson, and N. Sun, “New parallel randomized algorithms for the traveling salesman problem,” Computers

& Operations Research, vol. 26, no. 4, pp. 371–394, 1999.

[22] B. Angeniol, G. D. L. C. Vaubois, and J.-Y. Le Texier, “Self-organizing feature maps and the travelling salesman

problem,” Neural Networks, vol. 1, no. 4, pp. 289–293, 1988.

[23] M. Lazarova and P. Borovska, “Comparison of parallel metaheuristics for solving the TSP,” in Proceedings of the 9th

International Conference on Computer Systems and Technologies and Workshop for PhD Students in Computing,

p. 17, ACM, 2008.

[24] MSDN, “Parallel loops.” https://msdn.microsoft.com/en-us/library/ff963552.aspx, 2016 [accessed 02.20.2016].

[25] I. A. Aziz, N. Haron, M. Mehat, L. Jung, A. N. Mustapa, and E. Akhir, “Solving traveling salesman problem on

cluster compute nodes,” WSEAS Transactions on Computers, vol. 8, no. 6, pp. 1020–1029, 2009.

19

[26] G. Cesari, “Divide and conquer strategies for parallel TSP heuristics,” Computers & Operations Research, vol. 23,

no. 7, pp. 681–694, 1996.

[27] MSDN, “Parallel class.” https://msdn.microsoft.com/en-us/library/system.threading.tasks.parallel(v=vs.

110).aspx, 2016 [accessed 02.20.2016].

[28] MSDN, “Asynchronous client socket example.” https://msdn.microsoft.com/en-us/library/bew39x2a%28v=vs.110%

29.aspx?f=255\&MSPPError=-2147217396, 2016 [accessed 02.20.2016].

[29] S. Casey, “How to determine the effectiveness of hyper-threading technology with an application.”

https://software.intel.com/en-us/articles/how-to-determine-the-effectiveness-of-hyper-threading-technology-with-

an-application/, 2011 [accessed 06.13.2016].

[30] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIAM Journal on Applied Mathematics, vol. 17, no. 2,

pp. 416–429, 1969.

20

Table A.7: Concorde Average Execution Times and Average Cost per Tour

Average Execution Time (seconds)

of TSPs Single Parallel Distributed 2 Distributed 3 Avg. Cost

5 Cities 10 0.27 0.07 0.05 0.04 740.20
100 2.73 0.59 0.35 0.27 782.50

1000 27.83 8.13 4.44 3.48 788.10
10000 281.20 84.19 52.98 44.00 786.20

25 Cities 10 0.66 0.14 0.11 0.11 1466.80
100 6.71 1.48 0.68 0.53 1490.90

1000 70.33 18.89 6.80 5.19 1499.60
10000 684.64 183.48 74.28 53.68 1499.80

50 Cities 10 1.53 0.41 0.32 0.37 2215.50
100 16.33 4.47 2.33 2.63 2203.90

1000 180.18 38.91 17.99 13.35 2208.80
10000 1763.84 384.82 167.74 117.51 2208.00

100 Cities 10 6.21 1.44 1.32 1.20 2747.80
100 150.80 28.02 19.20 14.99 2826.10

1000 1484.11 224.42 124.68 88.17 2807.20
10000 14081.30 2070.64 1065.72 728.33 2807.40

150 Cities 10 21.25 14.84 20.66 15.85 3055.32
100 358.97 66.28 63.61 70.01 3055.05

1000 3882.53 580.35 351.87 269.67 3053.73
10000 39560.49 5492.05 3164.54 2238.90 3050.34

200 Cities 10 66.58 30.09 131.03 29.17 3148.05
100 743.70 143.93 309.28 139.23 3161.00

1000 7594.09 1173.47 719.45 799.00 3160.18
10000 74592.12 12502.08 6082.22 5193.40 3157.99

Appendix A. Computational Time

Tables A.7 and A.8 show the average execution times and average tour costs of Concorde and LKH. In

all experiments, we use a single cross aisle traditional warehouse layout. The warehouse can accomodate

1000 items and these items are randomly distributed throughout the storage locations. We generated

10, 100, 1000, and 10000 orders with 4, 24, 49, 99, 149, and 199 items, and we calculated the distance

of each order using TSP solvers. Therefore the average cost for 5 cities and 10 # of TSPs is the average

distance of completing 10 orders where each order has 4 items. Since each order has to start and end at

the depot, picking 4 items in a warehouse is a 5-city TSP.

21

Table A.8: LKH Average Execution Times and Average Cost per Tour

Average Execution Time (seconds)

of TSPs Single Parallel Distributed 2 Distributed 3 Avg. Cost

5 Cities 10 0.11 0.04 0.03 0.02 740.20
100 1.13 0.30 0.22 0.16 782.50

1000 11.29 2.66 1.79 1.43 788.10
10000 114.15 28.29 24.40 20.84 786.20

25 Cities 10 0.21 0.05 0.05 0.04 1466.80
100 1.80 0.41 0.30 0.24 1490.90

1000 19.00 3.39 2.52 2.05 1499.60
10000 185.82 36.03 31.68 24.18 1499.80

50 Cities 10 0.65 0.16 0.14 0.12 2215.50
100 5.51 0.90 0.68 0.57 2204.10

1000 55.85 8.27 6.07 4.56 2209.00
10000 551.92 81.21 62.35 47.73 2208.20

100 Cities 10 2.05 0.50 0.46 0.44 2752.90
100 25.72 3.84 2.46 2.00 2829.20

1000 249.86 35.78 22.03 15.73 2809.80
10000 2514.98 348.26 208.26 150.25 2809.90

150 Cities 10 2.90 0.71 0.74 0.67 3064.88
100 31.64 4.83 2.46 2.69 3065.36

1000 331.69 46.91 30.73 23.22 3063.17
10000 3310.92 449.05 287.87 223.98 3060.00

200 Cities 10 3.67 1.01 1.06 1.02 3158.04
100 30.64 4.51 4.00 3.31 3169.81

1000 291.98 40.98 31.48 24.66 3170.03
10000 3060.64 408.72 302.00 236.98 3168.13

22

